IEMN
  • Home
  • News
    • IEMN Newsletters
    • M2-Ingé Internships
    • Job offers
    • All news
  • The Institute
    • Presentation
    • Organization of the institute
    • The Scientific Department
    • The Technological Department
    • Administrative and financial management
    • Rules of procedure
    • Our commitments
  • The Research
    • Scientific departments
      • Nanostructured Materials and Components
      • Micro / nano optoelectronics
      • Telecommunications Technologies and Intelligent Systems
      • Acoustic
    • Research groups
    • Flagship
  • Scientific Production
    • IEMN publications
    • Scientific production resources
  • The platforms
    • CMNF - Central Platform for Micro Nano Manufacturing
      • Engraving and implantation pole
      • In Line Analysis Unit
      • Soft Lithography and Bio Microfluidics
      • Deposits and epitaxy division
      • Lithography Unit
      • Packaging Division
      • CMNF Staff
    • PCMP - Multi-Physics Characterization Platform
      • Scanning Probe Microscopy Facility
      • Hyperfrequency, Optical and Photonic Characterization (CHOP)
      • Advanced Communications Systems and Prototyping cluster (SigmaCOM)
      • Characterisation, ElectroMagnetic Compatibility and Prototyping Centre (C2EM)
      • PCMP Staff
    • Services offered by our platforms
  • Partnership - Valuation
    • Academic Collaborations
    • ANR Projects
    • Main international collaborations
    • Industrial partnerships
    • The joint IEMN-Industry laboratories
    • Startups
  • Research Training
    • After the thesis
      • Do a post-doc at the IEMN
      • Towards the world of business and industry
      • Become a teacher-researcher
      • Become a Researcher
      • Starting a business at IEMN
      • FOCUS on a SATT engineer from the IEMN
    • A thesis at IEMN
      • Thesis and HDR defenses
      • Thesis topics
      • Financing
      • Doctoral studies
    • Master - Engineer
      • Masters ULille
        • Master Life Sciences and Technologies graduate programme
        • Master Nanosciences and Nanotechnologies - Speciality ETECH
        • Master Networks and Telecommunications
      • UPHF-INSA Masters
        • Master in Embedded Systems and Mobile Communications Engineering
        • Master Cyber Defense and Information Security
        • Master in Materials, Control and Safety
        • Master in Image and Sound Systems Engineering
      • Partner/Tutoring Engineering Schools
      • M2-Ingé Internships
    • The Lille branch of the GIP-CNFM
    • Nano-École Lille
  • Contact Us
    • Location
    • Contact form
    • Annuaire Intranet
    • « Suivez-nous »
  • Our support
  • fr_FR
  • Rechercher
  • Menu Menu
GROUPE DE RECHERCHE : SILPHYDE
GROUPE DE RECHERCHE : SILPHYDE
GROUPE DE RECHERCHE : SILPHYDE
  • Introduction
  • Members
  • Research
  • Other groups

SILPHYDE Group: Simulation of nitride-based electronic devices

GaN and nitride-based wide gap materials are extremely promising for the realization of both high frequency and high power electronic devices. Some theoretical investigations have been performed in this context.

1. In the framework of the ANR project SATELLITE (coordinator JC De Jaeger, head of PUISSANCE group), we developed Monte Carlo tools for studying electron transport in bulk nitride materials, heterostructures and HEMTs devices. As a byproduct of this work, we obtained transport parameters for these materials directly usable in device macroscopic modeling.

2. The potential of vertical GaN transferred electron devices (TEDs) for the realization of RF power sources at THz frequencies has been evaluated by means of time-domain quasi-electrostatic modeling associated to energy-momentum macroscopic approach for the free electron transport modeling.

Their RF properties fundamentally rely on the velocity-field characteristics of GaN exhibiting high mobility, large peak velocity and negative differential mobility. Theoretical investigations tend to demonstrate that mesa GaN TEDs operating in the accumulation layer transit time mode can be a candidate for the realization of RF low-power sources at 1 THz. However, this frequency must be considered as close to the maximum achievable one because of the limitation resulting from the device low negative resistance. The oscillator net performance will be dependent on the quality of the RF load circuit in terms of impedance matching capabilities and RF loss level. Moreover, the thermal limitation must be also considered. In fact, because of the required high DC bias conditions, only a strongly cooled CW or a pulsed RF operation seems achievable.

3. A more prospective study is devoted to THz GaN planar distributed TEDs. Their RF operation is based on the interaction between an electromagnetic wave propagating in a plane parallel to the device epitaxial layers and electron moving perpendicularly under the accumulation layer and transit mode. Thus, the device active zone behaves as a negative resistance medium leading to the electromagnetic wave amplitude amplification. The device non-linear and complex RF operation is studied by means of a physical time-domain electromagnetic/macroscopic transport model. The potential of THz full planar waveguide based oscillators is presently investigated. The expected DTED RF operation based on the amplification of a quasi-transverse electromagnetic wave has been confirmed.

The modeling is now extended to the whole oscillator including the circuit elements constituting the external load circuit in order to account for and consequently optimize the active device/ load circuit energy transfer.

Another DTED oscillator structure based on the planar waveguide/ output plasmonic waveguide technology is also under investigation.

Study of THz GaN planar Distributed Transferred Electron Devices

Structure and RF operating principle of Distributed Transferred Electron Device.

Structure and RF operating principle of Distributed Transferred Electron Device.

Operation of the device: amplification of a quasi-transverse electromagnetic wave C. Dalle, Int J Numer Model. 2018;31:e2213. https://doi.org/10.1002/jnm.2213

Operation of the device: amplification of a quasi-transverse electromagnetic wave C. Dalle, Int J Numer Model. 2018;31:e2213. https://doi.org/10.1002/jnm.2213

Prospective DTED (Distributed Transferred Electron Device) oscillator structure based on the planar waveguide/ output plasmonic waveguide technology.

Prospective DTED (Distributed Transferred Electron Device) oscillator structure based on the planar waveguide/ output plasmonic waveguide technology.

SILPHYDE Group : OTHER ACTIVITIES

  • Modeling of THz sources based on Quantum Cascade Lasers
  • Study of ferroelectric nanostructures
  • Monte Carlo simulation of 2D materials for electronic and spintronic applications

  • Research departments
    • Nanostructured Materials and Components
    • Micro / nano optoelectronics
    • Telecommunications Technologies and Intelligent Systems
    • Acoustic
  • Research groups
    • Group : ACOUSTICS
      • Members
      • Partners
      • Equipment
      • Contracts
      • Etudes en cours
    • Group : AIMAN-FILMS
      • Members
      • Results
      • Research areas
      • Projects
      • Publications
      • Collaborations
    • Group : ANODE
      • Team members
      • Solid State THz Electronic Activities
      • Ultra low power biomimetic sensors
      • Nano-Device Characterization
    • Group : BioMEMS
      • Members
      • On going studies
    • Group : CARBON
      • Members
      • Research Areas
      • Gracy Project
      • Technologies
      • Partnerships
      • Job Opening
      • High school students and the general public
    • Group : COMNUM
      • Members
      • Intelligent Transport
      • Digital video transmission systems
      • Multi-User Communications Systems
    • Group : CSAM
      • Low-energy devices for healthcare
      • Members
      • Energy micro-storage devices for connected objects
      • Energy-efficient circuits/systems
      • Multiscale radiofrequency characterization
    • Group : SUBLAMBDA
      • Members
      • Thesis offer
      • Post-Doctorate Offer
    • Group : EPIPHY
      • Team members
        • Clément Barbot
        • Corentin Sthioul
        • Eric Faulques
        • Naveed Stegamat
        • Niels Chapuis
        • Walter BATISTA PESSOA
        • Konstantinos Papatryfonos
        • Konstantinos Papatryfonos
        • Ludovic DESPLANQUE
        • Wijden KHELIFI
        • Jawad HADID
        • Djamila HOURLIER
        • Dominique VIGNAUD
        • Xavier WALLART
      • Masters - PhDs
      • Equipment
      • On-going studies
    • Group : MAMINA
    • Group : MICROELEC SI
      • Team members
      • Research Projects
      • Publications
      • News
      • Positions
    • Group : MITEC
      • Members
      • Themes
    • Group : NAM6
      • Members
      • Projects - Contracts
    • Group: NANSEE
      • Members
      • Equipment
      • Projects
      • Themes
      • Research Highlights
    • Group : NCM
      • Collaboration
      • NCM collaboration
      • Collaborations
      • Members
        • bilel-hafsi
        • david-guerin
        • dominique-vuillaume
        • fabien-alibart
        • Imen-hnid
        • nataliya-kalashnyk
        • stephane-lenfant
      • Research activities
      • Projects
      • Publications
    • Group : OPTO
      • Members
      • Projects
      • Publications
      • Job offers
    • Group : PHOTONIQUE THz
      • Members
        • Stefano BARBIERI
        • Fuanki BAVEDILA
        • Maximilien BILLET
        • Sara BRETIN
        • Yann DESMET
        • Guillaume DUCOURNAU
        • Kevin FROBERGER
        • Cybelle GONCALVES
        • Michael HAKL
        • Tomáš HORÁK
        • Jean-François LAMPIN
        • Quyang LIN
        • Sergey MITRYUKOVSKIY
        • Romain PERETTI
        • Emilien PEYTAVIT
        • Oleksandr STEPANENKO
        • Joan TURUT
        • Mathias VANWOLLEGHEM
      • Research areas
      • NEWS
      • Projects
    • PHYSIQUE Group
      • EPHONI
        • Funded projects
      • Miscellaneous
      • NAMASTE
        • Members
        • Projects
      • Nanoacoustics
        • Members
      • Physics of Nanostructures & Quantum Devices
        • Research activities
        • Members
        • Job opportunities
        • Media reports
      • HOPAST
    • Group : PUISSANCE
      • PUISSANCE Group news
      • European/International/PIA/NRA projects
      • Members
        • Marie LESECQ
        • Nicolas DEFRANCE
        • Jean-Claude DE JAEGER
        • Christophe GAQUIÈRE
      • Research
        • AlGaN/GaN HEMT thermal modeling and characterization
        • Measurement above 110GHz
        • Modelling of GaN-HEMT for high efficiency power converters
        • Nanoribbon-channel AlGaN/GaN HEMTs
        • New technological routes to improve thermal managements in GaN HEMTs
        • Power performance at 40GHz of AlGaN/GaN HEMTs on silicon substrate
        • Temperature monitoring of operating AlGaN/GaN HEMTs
    • Group: WIND
      • Team members
      • News
      • Projects
      • Facilities
      • Contact Us
      • Job opening
    • Group : TELICE
      • Members
      • On going studies
      • MAMIMOSA
    • Group : TPIA
  • Flagship
Logo
Cité Scientifique
Avenue Henri Poincaré
CS 60069
59 652 Villeneuve d'Ascq Cedex, France
Tel : 03 20 19 79 79
CNRS Logo University of Lille Logo University Polytech Logo Junia Logo Centrale Lille Logo Renatech Logo RFnet Logo
Site map
Copyright Service ECM et pôle SISR 2024
  • Scientific production
  • Legal information
  • Privacy policy
Faire défiler vers le haut
fr_FR
fr_FR
en_GB
We use cookies to ensure you have the best experience on our website. If you continue to use this site, we will assume that you are happy with it.OKNoPrivacy policy