IEMN
  • Accueil
  • Actualités
    • Newsletters de l’IEMN
    • Offres de Stages M2-Ingé
    • Les offres d’emplois
    • Toutes les actualités
  • L’Institut
    • Présentation
    • Organisation de l’institut
    • La Direction Scientifique
    • La Direction Technologique
    • La direction administrative et financière
    • Règlement intérieur
    • Nos engagements
  • La Recherche
    • Les départements scientifiques
      • Matériaux Nanostructures et Composants
      • Micro/nano et optoélectronique
      • Technologies des télécommunications et Systèmes intelligents
      • Acoustique
    • Les groupes de recherche
    • Les projets phares
  • Production Scientifique
    • Publications IEMN
    • Ressources production scientifique
  • Les plateformes
    • CMNF – Plateforme Centrale de Micro Nano Fabrication
      • Pôle Gravure et implantation
      • Pôle Analyse In Line
      • Pôle Soft Lithographie et Bio Microfluidique
      • Pôle Dépôts et épitaxie
      • Pôle Lithographie
      • Pôle Packaging
      • Staff CMNF
    • PCMP – Plateforme de Caractérisation Multi-Physique
      • Pôle Microscopie en Champ Proche (PCP)
      • Pôle Caractérisation Hyperfréquence, Optique et Photonique (CHOP)
      • Pôle Systèmes de COMmunications avancées et prototypage (SigmaCOM)
      • Pôle Caractérisation et Compatibilité ElectroMagnétique et prototypage (C2EM)
      • Staff PCMP
    • Prestations proposées par nos plateformes
  • Partenariat – Valorisation
    • Les Collaborations Académiques
    • Projets ANR
    • Principales collaborations internationales
    • Les partenariats industriels
    • Les laboratoires communs IEMN-Industrie
    • Les startups
  • La Formation à la Recherche
    • L’après-thèse
      • Faire un post-doc à l’IEMN
      • Vers le monde des entreprises et de l’industrie
      • Devenir Enseignant-Chercheur
      • Devenir Chercheur
      • Créer son entreprise à l’IEMN
      • FOCUS sur un ingénieur SATT issu de l’IEMN
    • Une thèse à l’IEMN
      • Soutenances de thèses et HDR
      • Sujets de thèses
      • Les financements
      • Les études doctorales
    • Master – Ingénieur
      • Masters ULille
        • Master Life Sciences and Technologies graduate program
        • Master Nanosciences and Nanotechnologies – Speciality ETECH
        • Master Réseaux et Télécommunications
      • Masters UPHF-INSA
        • Master Ingénierie des Systèmes embarqués et Communications Mobiles
        • Master Cyber-Défense et Sécurité de l’information
        • Master Matériaux, Contrôle, Sécurité
        • Master Ingénierie des Systèmes Images et Sons
      • Écoles Ingé partenaires/tutelles
      • Offres de Stages M2-Ingé
    • Le pôle lillois du GIP-CNFM
    • Nano-École Lille
  • Contact
    • Localisation
    • Formulaire de contact
    • Annuaire
  • Nos soutiens
  • en_GB
  • Rechercher
  • Menu Menu
Slide thumbnail
  • Introduction
  • Members
  • Research
  • Other groups

SILPHYDE Group : Modeling of THz sources based on Quantum Cascade Lasers

In our team, we have developed several kinds of simulators of QCLs, ranging from the most detailed and most computer consuming Monte Carlo method to simplified rate equation models which allow fast systematic computation for engineering purpose and from which one can derive analytic expressions for compact models or equivalent circuit modeling. In recent years, we mainly worked on such simplified models, in collaboration with our colleagues from Sétif University in Algeria and applied them to systems derived from QCLs and aimed at room temperature THz emission.

Quantum Cascade Lasers (QCLs) have proven as extremely valuable compact sources, especially in the terahertz range. Unfortunately, in this range of frequency, the need of cryogenic cooling severely limits practical applications. Room temperature operation at terahertz frequencies seems beyond reach for ‘standard’ QCLs. However, several systems derived from QCLs have been proposed to overcome this limitation.

An example of such systems is the ‘optically-pumped electrically-driven QCL’, which retains the cascade scheme in a periodic structure under the action of an applied electric field, but uses optical (rather electrical) pumping to ensure population inversion. We developed a simplified 4 levels rate equations model of such systems and obtained closed-form expressions for steady-state characteristics (populations, mid infra-red pump threshold, external optical efficiency) which bring into light the dependencies on device parameters. On the same premises we also investigated the dynamical behavior of this device, which depends on pump intensity but appears in general faster than conventional QCLs.

However, to date, the most successful compact sources for THz generation at RT are based on difference frequency generation. We applied our ‘simplified rate equations approach’ to the study of static and transient dynamics of such systems and get analytic expressions for time dependence of important characteristics such as levels populations and generated THz power.

Dynamic modeling of optically pumped electrically driven terahertz QCLs

Schematic conduction band energy diagram of two stages of a THz QC laser based on the optically pumped electrically driven scheme. Solid arrow: Pump absorption, dashed arrow: Pump recovery.

Schematic conduction band energy diagram of two stages of a THz QC laser based on the optically pumped electrically driven scheme. Solid arrow: Pump absorption, dashed arrow: Pump recovery.

Time evolution of the THz QC laser intensity (blue solid line) and population inversion density (red dashed line) under different pump intensity above threshold. Calculated by means of our rate equation model.. A. Hamadou, J.-L. Thobel, S. Lamari, Infrared Physics & Technology 81 (2017) 195–200 http://dx.doi.org/10.1016/j.infrared.2016.12.019

Time evolution of the THz QC laser intensity (blue solid line) and population inversion density (red dashed line) under different pump intensity above threshold. Calculated by means of our rate equation model.. A. Hamadou, J.-L. Thobel, S. Lamari, Infrared Physics & Technology 81 (2017) 195–200 http://dx.doi.org/10.1016/j.infrared.2016.12.019

QCL-Difference Frequency Generation structure

(a) Cross sectional view of the THz DFG device showing schematically the two parts of the active region. (b) Four-level model of one stage of the bound-to-continuum active region in a dual-wavelength QC laser as used in our work. Lasing takes place simultaneously through transitions from 4 onto 3 on one hand and from 4 onto 2 on the other. The THz frequency (60 µm wavelength) is generated via DFG process between levels 3 and 2.

(a) Cross sectional view of the THz DFG device showing schematically the two parts of the active region. (b) Four-level model of one stage of the bound-to-continuum active region in a dual-wavelength QC laser as used in our work. Lasing takes place simultaneously through transitions from 4 onto 3 on one hand and from 4 onto 2 on the other. The THz frequency (60 µm wavelength) is generated via DFG process between levels 3 and 2.

Example of use of our rate equation model for studying dynamical behavior: Time evolution of the normalized powers of the two mid-IR pumps and the THz DFG under different bias currents above the second QC laser threshold. The blue solid, red dashed and purple dotted lines are for 10.5 µm, 8.9 µm and 60 µm respectively. The build-up time t of the THz radiation can be explicitly obtained from our rate equations model. A. Hamadou, J.-L. Thobel, S. Lamari, Optik 156 (2018) 596–605 https://doi.org/10.1016/j.ijleo.2017.11.126

Example of use of our rate equation model for studying dynamical behavior: Time evolution of the normalized powers of the two mid-IR pumps and the THz DFG under different bias currents above the second QC laser threshold. The blue solid, red dashed and purple dotted lines are for 10.5 µm, 8.9 µm and 60 µm respectively. The build-up time t of the THz radiation can be explicitly obtained from our rate equations model. A. Hamadou, J.-L. Thobel, S. Lamari, Optik 156 (2018) 596–605 https://doi.org/10.1016/j.ijleo.2017.11.126

SILPHYDE Group : OTHER ACTIVITIES

  • Simulation of nitride-based electronic devices
  • Study of ferroelectric nanostructures
  • Monte Carlo simulation of 2D materials for electronic and spintronic applications

  • Les départements de recherche
    • Matériaux Nanostructures et Composants
    • Micro/nano et optoélectronique
    • Technologies des télécommunications et Systèmes intelligents
    • Acoustique
  • Les groupes de recherche
    • Groupe : ACOUSTIQUE
      • Membres
      • Partenaires
      • Equipements
      • Contracts
      • Etudes en cours
    • Groupe : AIMAN-FILMS
      • Membres
      • Results
      • Axes de Recherche
      • Projets
      • Publications
      • Collaborations
    • Groupe : ANODE
      • Team members
      • Solid State THz Electronic Activities
      • Ultra low power biomimetic sensors
      • Nano-Device Characterization
    • Groupe : BioMEMS
      • Members
      • On going studies
    • Groupe : CARBON
      • Members
      • Research Areas
      • Gracy Project
      • Technologies
      • Partnerships
      • Job Opening
      • Lycéens et grand public
    • Groupe : COMNUM
      • Membres
      • Transports Intelligents
      • Systèmes de transmission vidéo numérique
      • Systèmes de Communications Multi-Utilisateurs
    • Groupe : CSAM
      • Dispositifs à faible consommation énergétique pour la santé
      • Membres
      • Dispositifs de micro-stockage de l’énergie pour les objets connectés
      • Circuits/systèmes à efficacité énergétique
      • Caractérisation radiofréquence multi-échelle
    • Groupe : SUBLAMBDA
      • Membres
      • Offre de Thèse
      • Offre de Post-Doctorat
    • Groupe : EPIPHY
      • Team members
        • Clément Barbot
        • Corentin Sthioul
        • Eric Faulques
        • Naveed Stegamat
        • Niels Chapuis
        • Walter BATISTA PESSOA
        • Konstantinos Papatryfonos
        • Konstantinos Papatryfonos
        • Ludovic DESPLANQUE
        • Wijden KHELIFI
        • Jawad HADID
        • Djamila HOURLIER
        • Dominique VIGNAUD
        • Xavier WALLART
      • Masters – PhDs
      • Equipment
      • On-going studies
    • Groupe : MAMINA
    • Groupe : MICROELEC SI
      • Team members
      • Research Projects
      • Publications
      • News
      • Positions
    • Groupe : MITEC
      • Membres
      • Thématiques
    • Groupe : NAM6
      • Members
      • Projects – Contracts
    • Groupe: NANSEE
      • Membres
      • Equipements
      • Projets
      • Thématiques
      • Faits marquants
    • Groupe : NCM
      • Collaboration
      • Collaboration NCM
      • Collaborations
      • Members
        • bilel-hafsi
        • david-guerin
        • dominique-vuillaume
        • fabien-alibart
        • Imen-hnid
        • nataliya-kalashnyk
        • stephane-lenfant
      • Research activities
      • Projects
      • Publications
    • Groupe : OPTO
      • Membres
      • Projets
      • Publications
      • Offres d’emploi
    • Groupe : PHOTONIQUE THz
      • Membres
        • Stefano BARBIERI
        • Fuanki BAVEDILA
        • Maximilien BILLET
        • Sara BRETIN
        • Yann DESMET
        • Guillaume DUCOURNAU
        • Kevin FROBERGER
        • Cybelle GONCALVES
        • Michael HAKL
        • Tomáš HORÁK
        • Jean-François LAMPIN
        • Quyang LIN
        • Sergey MITRYUKOVSKIY
        • Romain PERETTI
        • Emilien PEYTAVIT
        • Oleksandr STEPANENKO
        • Joan TURUT
        • Mathias VANWOLLEGHEM
      • Axes de Recherche
      • NEWS
      • Projets
    • Groupe : PHYSIQUE
      • EPHONI
        • Funded projects
      • Divers
      • NAMASTE
        • Members
        • Projets
      • Nanoacoustics
        • Members
      • Physics of Nanostructures & Quantum Devices
        • Research activities
        • Members
        • Job opportunities
        • Media reports
      • HOPAST
    • Groupe : PUISSANCE
      • Actualités du groupe PUISSANCE
      • Projets européens/Internationaux/PIA/ANR
      • Members
        • Marie LESECQ
        • Nicolas DEFRANCE
        • Jean-Claude DE JAEGER
        • Christophe GAQUIÈRE
      • Research
        • AlGaN/GaN HEMT thermal modeling and characterization
        • Measurement above 110GHz
        • Modelling of GaN-HEMT for high efficiency power converters
        • Nanoribbon-channel AlGaN/GaN HEMTs
        • New technological routes to improve thermal managements in GaN HEMTs
        • Power performance at 40GHz of AlGaN/GaN HEMTs on silicon substrate
        • Temperature monitoring of operating AlGaN/GaN HEMTs
    • Groupe: WIND
      • Team members
      • News
      • Projects
      • Facilities
      • Contact
      • Job opening
    • Groupe : TELICE
      • Members
      • On going studies
      • MAMIMOSA
    • Groupe : TPIA
  • Les projets phares
Logo
Cité Scientifique
Avenue Henri Poincaré
CS 60069
59 652 Villeneuve d'Ascq Cedex, France
CNRS Logo University of Lille Logo University Polytech Logo Junia Logo Centrale Lille Logo Renatech Logo RFnet Logo
Plan du site
© Copyright Service ECM et pôle SISR 2024
  • Production scientifique
  • Mentions légales
  • Politique de confidentialité
Faire défiler vers le haut
fr_FR
fr_FR
en_GB
Nous utilisons des cookies pour vous garantir la meilleure expérience sur notre site web. Si vous continuez à utiliser ce site, nous supposerons que vous en êtes satisfait.OKNonPolitique de confidentialité