Seminar: RF-Sensors in Advanced Applications

Dr.-Ing. Christoph BAER & Ing. Birk HATTENHORST
Institute of Electronic Circuits
Ruhr-Universität Bochum, Universitätsstr. 150, ID 03/324
44780 Bochum - GERMANY

Monday 23 April 2018 at 2.00 pm
IEMN Boardroom - Villeneuve d'Ascq

Abstract:

RF-sensors and Radar systems found their way into civil and industrial applications decades ago. Since then, they reliably measure distances, velocities, and filling levels etc. contact free and with great accuracy. Lately, current trends and technological achievements pushed operating frequencies up to the millimeter wave range, which allows for the determination of various additional physical quantities. Consequently, these novel sensors can be utilized in numerous areas of process industry, civil protection, and daily life. Therefore, their main purpose will be the determination and investigation of environmental parameters that allow for the supervision of crucial system parameters and the interpretation of complex processes. The talk will give an overview on diverse RF-sensors for different applications, which were explored at the Ruhr-University Bochum within recent years. The presented sensor applications include: humanitarian demining, mmWave imaging, contact-free gas sensing, as well as dust and particle determination for process industry and natural hazard protection. Next to the introduction of the numerous areas of application, the different sensor designs will be explained and their field applicability verified. Moreover, opportunities regarding student exchanges between Ruhr-University and Lille University will be introduced and discussed.

About the lecturers:
Christoph Baer received his diploma and doctor degree in electrical engineering at Ruhr-University Bochum in 2009 and 2015, respectively. From 2006 to 2015 he worked as a research engineer on radar systems and radar applications with the Krohne Group in Duisburg, Germany. Currently, Dr. Baer is postdoctoral researcher and academic counselor with the Institute of Electronic Circuits at Ruhr-University Bochum. He is author or co-author of more than 60 international publications and holds 8 international patents. His research interests include ground penetrating radar systems and concepts, methods for humanitarian demining, RF-material characterization and synthesis, sensors for avalanche science, and industrial microwave sensors. Dr. Baer is chairman of the IEEE SIGHT Germany Section.

 

 

Birk Hattenhorst was born in Lübbecke, Germany, in 1989. He received the M.Sc. degree in electrical engineering from the Ruhr-University Bochum, Bochum, Germany, in 2014. He has been a Research Assistant with the Institute of Electronic Circuits, Ruhr-University Bochum, since 2014. His current research interests include microwave measurement techniques, radar technology, antenna design, meta-materials and material characterization.

Séminaire : Innovative Colloidal Nanostructures: Nanoplatelets and III-V Quantum Dots

tessier_mickaelDr Mickaël Tessier
Ghent university, Belgium

Mercredi 17 avril 2018 à 14h00
IEMN Boardroom - Villeneuve d'Ascq

Abstract:

Innovative Colloidal Nanostructures: Nanoplatelets and III-V Quantum Dots
Colloidal Quantum Dots (QDs) are semiconductor nanocrystals in the 1 to 10 nm size range synthesized by wet chemistry process. Because of these small sizes, QDs are subject to quantum-size effect. This effect leads to discrete transitions, much like in an atom or a molecule, with energies higher than the bulk and that are strongly dependent of the QDs sizes. This property has allowed QDs to emerge as a novel class of optoelectronic materials over the last 25 years. The most advanced application of colloidal QDs, at least from a research valorization perspective, is their commercial use in liquid crystal displays (LCDs). First launched in 2013, sales of QDs-enhanced LCDs are expected to achieve 18 million units in 2018.
a. Vials containing QDs of different sizes under UV light. The emitted color depends of the QDs sizes. b. Commercial QDs display (http://www.samsung.com/global/tv/).
Significant advances have been made in the synthesis of QDs since the beginning of the 1990s. The shape of the nanoparticles can now be finely controlled, and nanoparticles with various shapes have been synthesized. In particular, colloidal nanoplatelets are atomically flat nanostructures that present only one dimension of quantum confinement.1In this lecture, I first present how the nanoplateletssizeand composition can be perfectly controlled via inventive synthesis protocols and how theseparameters affects the nanoplatelets optical properties.(2–4)
To facilitate the use of nanocrystals in the industry, interest is shifting from the well-characterized cadmium-based QDs to cadmium-free alternatives such as indium phosphide. We recently proposed protocols based onaminophosphine-type precursors that allow for a cost efficient, up-scaled syntheses of indium phosphide(InP) QDs of different sizes.(5) A detailed understanding of the reaction chemistry is a key in the development of colloidal QDs synthesis. I present an investigation of chemical reactions leading to the formation of InP starting from aminophosphine-type precursors.(6) This mechanism is innovative in the sense that it points out a double role of the phosphorus precursor in the reaction as both a reducing agent and the source of the phosphorus needed to form InP. Its understanding furthers the general use of aminopnictogens for the
synthesis of III-V QDs.(7) Finally, I show that InP QDs can be processed in polymer layer and that their structure can be optimized in order to obtain more efficient and cheaper lighting devices.(8)

References
(1) Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Nat. Mater.2011, 10, 936–941.
(2) Tessier, M. D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Dubertret, B. Nano Lett.2013, 13, 3321–3328.
(3) Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.; Ithurria, S.; Dubertret, B. Nano Lett.2014, 14, 207–213.
(4) Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B. ACS Nano2012, 6, 6751–6758.
(5) Tessier, M. D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z. Chem. Mater.2015, 27, 4893–4898.
(6) Tessier, M. D.; De Nolf, K.; Dupont, D.; Sinnaeve, D.; De Roo, J.; Hens, Z. J. Am. Chem. Soc.2016, 138, 5923–5929.
(7) Grigel, V.; Dupont, D.; De Nolf, K.; Hens, Z.; Tessier, M. D. J. Am. Chem. Soc.2016, 138, 13485–13488.
(8) Dupont, D.; Tessier, M. D.; Smet, P. F.; Hens, Z. Adv. Mater.2017, 29, 1700686.

Les mardis de l’Innovation : L’enjeu global du stockage de l’énergie

pour l’avenir de l’internet des objets, des énergies alternatives et de la mobilité.
Christophe LETHIEN, Institut d’Electronique, de Microélectronique et de Nanotechnologie, Université de Lille, CNRS.
Les Mardis de l’innovation. 20 Mars 2018.

> Visionnez la conférence sur vimeo

 Véritable encyclopédie vivante de l’innovation à travers le monde, destinée aux acteurs de l’innovation. Les Mardis de l’Innovation sont des cours/conférences en format ouvert portant sur la culture de l’innovation et sa mise en œuvre entrepreneuriale. Depuis dix ans, 270 cours/conférences, plus de 600 professionnels formés, plus de 10 000 auditeurs libres, 200 témoignages d’entreprises parmi les plus innovantes au monde.

 

IEMN : CS Industry Award

Rewarding excellence, innovation and success

La compagnie ALLOS semiconductors s’est vu décerner un CS Award portant sur des travaux effectués en étroite collaboration avec l’équipe de recherche du Dr Farid Medjdoub de l‘Institut d’électronique, de microélectronique et de nanotechnologie. Les derniers résultats de l’IEMN démontrent notamment une tension de claquage de plus de 1400 V pour les mesures verticales et latérales sur le prochain produit d’ALLOS, l’épiwafer GaN-on-Si pour les appareils de 1200 V.

H.D.R. Contributions à la compréhension du canal de propagation sans-fil MIMO : modèles, applications et perspectives – GAILLOT, DAVY

HABILITATION A DIRIGER DES RECHERCHES – UNIVERSITE DE LILLE

DAVY GAILLOT
27 mars à 10h30
Amphithéâtre 1A12 – IUT-A

 

Ecole doctorale : Sciences Pour l’Ingénieur (SPI)
Laboratoire/Etablissement : IEMN-IRCICA, Université de Lille – FST
Discipline : SCIENCES PHYSIQUES

LES MEMBRES DU JURY :

Garant de l’habilitation :

  • MME. LIENARD Martine, Professeure de l’Université de Lille – FST

Rapporteurs :

  • M. BENLARBI-DELAI Aziz, Professeur de Sorbonne Université
  • M. EL ZEIN Ghaïs, Professeur de l’INSA Rennes
  • M. VAUZELLE Rodolphe, Professeur de l’Université de Poitiers

Examiners :

  • M. CLAVIER Laurent, Professeur de l’Institut Mines TELECOM Lille-Douai
  • M. OESTGES Claude, Professeur de l’Université Catholique de Louvain, Belgique
  • SOUTENANCE : Mardi 27 Mars 2018 à 10h30, IUT-A Amphi 1A12

HDR_2018_Davy Gaillot

Seminar: Molecular spin coupling at the tip of an STM

By Laurent Limot
CNRS researcher at the IPCMS in Strasbourg
Contact: limot@ipcms.unistra.fr

Wednesday 16 April 2018 at 10.30 a.m.
IEMN Boardroom - Villeneuve d'Ascq

 

Abstract:

Recent advances in addressing and controlling the spin states of a surface-supported object (atom or molecule) have further accredited the prospect of quantum computing and of an ultimate data-storage capacity [1]. Information encoding requires that the object must possess stable magnetic states, in particular magnetic anisotropy to yield distinct spin-dependent states in the absence of a magnetic field together with long magnetic relaxation times. Scanning probe techniques have shown that inelastic electron tunneling spectroscopy (IETS) within the junction of a scanning tunneling microscope (STM) is a good starting point to study the stability of these spin states [2]. STM-IETS allows for an all-electrical characterization of these states by promoting and detecting spin-flip excitations within the object of interest. As spin excitations need however to be preserved from scattering events with itinerant electrons, single objects are usually placed on non-metallic surfaces such as thin-insulating layers or superconductors. In this sense, new approaches to improve the detection of spin-flip excitations are desirable. With this purpose we present here a novel strategy based on the molecular functionalization of a STM tip. We study the surface magnetism of a simple doubledecker molecule, nickelocene [Ni(C5H5)2], which is adsorbed directly on a copper surface. By means of X-ray magnetic circular dichroism and density functional theory calculations, we show that nickelocene on the surface is magnetic (Spin = 1) and possesses a uniaxial magnetic anisotropy, while IETS reveals an exceptionally efficient spin-flip excitation occurring in the molecule [3]. Interestingly, nickelocene preserves its magnetic moment and magnetic anisotropy not only on the surface, but also in different metallic environments. Taking advantage of this robustness, we are able to functionalize the STM tip with a nickelocene [3,4], which can then be employed as a portable source of inelastic excitations. As we will show during the talk, IETS can then be used to probe the interaction between a surface-supported object and the nickelocene tip, including a magnetic interaction.

M. Ormaza1, P. Abufager2, B. Verlhac1, N. Bachellier1, M.-L. Bocquet3, N. Lorente4, and Laurent Limot1,*
1Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
2Instituto de Física de Rosario, CONICET, Universidad Nacional de Rosario, Argentina
3Ecole Normale Supérieure, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
4CFM/MPC and DIPC, 20018 Donostia-San Sebastián, Spain

References
[1] F.D. Natterer et al, Nature 543, 226 (2017); T. Choi et al, Nat. Nanotech. 6 (2017)
[2] A.J. Heinrich, J.A. Gupta, C.P. Lutz, and D.M. Eigler, Science 306, 466 (2004)
[3] M. Ormaza et al, Nano Lett. 17, 1877 (2017)
[4] M. Ormaza et al, Nat. Commun. 8, 1974 (2017)

 

 

date_04-05

Conference: Prototype of Terahertz Communications at 300 GHz: Devices, Packages

HO-JIN-SONG_Pohang_University_of_Science_and_Technology-POSTECH

Dr. HO-JIN SONG, Pohang University of Science and Technology (POSTECH)

Tuesday 5 April at 10.30 am

Conference 10:30
Anfiteather - IEMN-LCI Institut d'Electronique, de Microélectronique et de Nanotechnologie U.M.R C.N.R.S 8520 - Laboratoire Central - Cité Scientifique - Avenue Poincaré - CS 60069 - 59652 VILLENEUVE D'ASCQ CEDEX

Speakers

Pohang-University-of-Science-and-Technology_logo

Read more

Innovation Tuesdays: The global challenge of energy storage for the future of the Internet of Things, alternative energies and mobility

Tuesday 20th March 2018

Welcome 18:00 - Conference 18:30 - 20:30
CNRS, 3 rue Michel-Ange, 75016 Paris

Energy storage technologies are at the heart of a major global challenge. The future of many innovations is linked to major advances in compact storage capacity and rapid battery recharging (cars and all other forms of mobility, including smartphones). As the major alternative energies (wind and solar) are not continuous, their effectiveness in future networks is also linked to improvements in electricity storage. As for the gigantic world of connected objects in the offing, this will require miniaturised batteries with very long lifetimes without recharging. While lithium is currently the leading material, with a wide range of combinations, other materials and alternative technologies such as fuel cells are making rapid progress. A journey to the heart of global competition, from advanced research into battery efficiency and recycling to access to materials, leading to a global industrial battle currently dominated by Asia.

Speakers

  • François BARSACQCEO, EasyLi, designer and manufacturer of energy storage solutions
  • Patrice SIMONElectrochemical Energy Storage Network, RS2E
  • Christophe LETHIENInstitute of Electronics, Microelectronics and Nanotechnology , IEMNUniversity of Lille, CNRS
  • Nicolas LECLERE, Head of the Electric Powertrain Innovation Division, PSA Group

Séminaire : ‘Substrate-Integrated-Waveguide-Based Antenna Systems for 5G and the Internet-of-Things’

mardi 20 mars à 11h00 – Amphithéâtre IEMN – LCI Villeneuve d’Ascq

Dr. Sam Lemey, Ghent University.
Research Disciplines : Electromagnetism and antenna technology  High frequency circuits 
Sam.Lemey@ugent.be

Abstract: The Internet of Things (IoT) and Industry 4.0 will bring a massive change to the way we live and work in the near future. Fueled by the adaption of novel key-enabling technologies, common objects, tools, machinery, and even garments, will be augmented with sensing, processing, and wireless communication/localization capabilities. The pervasive integration of such a smart common objects into the internet will improve our awareness of our surroundings and physical conditions, thereby helping us to make better decisions. However, the far-reaching integration scenarios, the ever-increasing demand for higher data rates and the harsh and hostile IoT/Industry 4.0 environment make antenna design for IoT-applications substantially more challenging.

In this seminar, I will discuss a new class of high-performance low-cost antenna systems for the 5G wireless communication protocol and the Internet of Things.  In particular, the substrate integrated waveguide technology is adopted to implement cavity-backed slot antenna topologies in conventional and unconventional substrate materials. Owing to their extreme antenna-platform isolation, very stable antenna characteristics are obtained in challenging deployment conditions and with active transceiver and energy harvesting electronics directly integrated on the antenna platform. In addition, it will be shown that broadband operation can be obtained by diverse bandwidth enhancement techniques, whereas miniaturization can be obtained by relying on mode symmetries. Their potential will be demonstrated by presenting several broadband designs for smart floors, on-body applications and centimeter-precision localization applications. The seminar will be concluded by discussing the co-design procedure of a passive remote antenna unit for RoF communication and the realization of a compact, wideband and cost-effective mmWave antenna.

Short bio: Sam Lemey [S’14–M’16] (Sam.Lemey@ugent.be) received the M.Sc. degree in electronic engineering from Howest, University College West Flanders, Kortrijk, Belgium, in 2012 and the Ph.D. degree in electrical engineering from Ghent University, Ghent, Belgium, in 2016. He is currently working as a Post-Doctoral researcher at the Electromagnetics Group in the Department of Information Technology (INTEC) at Ghent University. His research focuses on robust antenna systems for wearable applications, energy-harvesting techniques for wireless nodes, active antenna design for the Internet of Things and 5G applications, IR-UWB antenna systems for centimeter-precision localization, novel techniques to implement substrate integrated waveguide structures in innovative materials, and full-wave/circuit co-optimization frameworks to realize active antenna systems.

Deux médailles d’argent CNRS décernées à deux chercheuses de l’IEMN

Link to the website http://www2.cnrs.fr/presse/communique/5493.htm

Sabine Szunerits (à gauche) et Anne-Christine Hladky (à droite) ©Joaquim Dassonville

Comme chaque année, le Centre National de la Recherche Scientifique décerne la médaille d’argent afin de distinguer des chercheur.e.s pour l’originalité, la qualité et l’importance de leurs travaux, reconnus sur le plan national et international.

Parmi les vingt lauréat.e.s de l’année 2018 figure deux chercheures de l’IEMN (UMR 8520 – CNRS/Université de Lille/ISEN/UVHC/Centrale Lille) :

Sabine Szunerits, Spécialiste des biocapteurs et de la nano-médecine pour le traitement des infections virales et bactériennes ou l’hypothermie.
Professeure des Universités exerçant au sein du Département de Chimie de l’Université de Lille et au sein du groupe NanoBiointerface de l’IEMN a été distinguée par l’Institut de Chimie – INC.

Anne-Christine Hladky, Experte en métamatériaux acoustiques.
Directrice de Recherche au CNRS et responsable du groupe ACOUSTIQUE de l’IEMN a été distinguée par l’Institut des Sciences de l’Ingénierie et des Systèmes – INSIS.

Téléchargez le communique de Presse CNRS