Seminar: SCANNING MICROWAVE MICROSCOPY

Davide Mencarelli, Ph.D.
UPVM (Universita Polytechnica delle Marche) in Ancona (Italy)

Friday 29 may 2018 – 2pm
IEMN – LCI Salle du conseil – Villeneuve d’Ascq

Abstract:

Scanning Probe Microscopy (SPM) includes a wide class of different techniques united by the fact that a probe is scanned over a sample surface to build up high-resolution images. The latter can normally visualize different properties of the sample, because different probe-sample short-range interactions can be exploited. Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) are very common examples of such techniques. Another very remarkable example is provided by Scanning Microwave 2
Microscopy (SMM), where the probe-sample interaction, still given by atomic force or by tunneling current, is augmented by e.m. evanescent fields, featuring rapid decay from the probe tip. The additional information provided by the electromagnetic interaction, usually in the form of a recorded reflection coefficient, constitutes a useful mean to investigate high frequency properties of sample surface, e.g. dielectric constant, resistivity, dispersion.
The above characterization is also useful for current research on nanomaterial and nanoparticles, which include biologic and medical targets, such as drug delivery and antibacterial applications. An interesting example is given by SMM scan of breast cancer cells MCF-7 treated by fullerene (C60), with a simultaneous topographic and electromagnetic characterization of sample surface. Calibration of SMM data is necessary in order to isolate the probe-sample interaction, and to possibly disentangle the topography from the electromagnetic response of the sample. Use of microwave microscopy could be crucial to investigate the effects of fullerene treatment, and could enable, in the future, deep imaging of its penetration inside the cells.

Seminar: OPTO-MECHANICS BY TRANSFORMATION OPTICS

Davide Mencarelli, Ph.D.
UPVM (Universita Polytechnica delle Marche) in Ancona (Italy)

Friday 25 mai 2018 – 11pm
IEMN – LCI Salle du conseil – Villeneuve d’Ascq

Abstract:

Rigorous approaches to the Electromagnetic/Mechanical problem are needed as a further step towards the development of microwave circuits based on phonon propagation at micro-and nano-scale. In the future, this kind of circuits is likely to integrate opto-mechanically pumped phonon sources and detectors, as well as phonon processing components (waveguides, splitters, memories) to process information by means of phonons.
This presentation proposes a numerical solution of the electromagnetic/mechanical system of equations governing light behavior in opto-mechanical cavities, with the help of an extended version of the Transformation Optics (TO) method. According to its original concept, TO is an analytical tool that facilitates the design of a variety of optical devices (lenses, phase shifters, deflectors, etc.) by deforming the coordinate system, warping space to control the trajectories of the electromagnetic radiation. Such alteration turns into a change of the electromagnetic material parameters such as permittivity and the permeability. For the special case of optomechanics, TO is used to take into account for the time varying boundaries of the computational domain. This kind of calculation allows the development of an efficient generation of microwave coherent phonon sources, by engineering their propagation or coupling with phonon waveguides. The efficiency and the versatility of the strategy is tested by analysing the resonant behaviour of a corrugated Si-based nanobeam and comparing numerical results to experimental ones from the available literature.

Seminar: Industrial Robotics at Nanoscale

Professor Sergej Fatikow
university of Oldenburg (AMIR group)

18 MAI 2018 at 11h00
IEMN amphithéâtre – Villeneuve d’Ascq

Abstract:

Current research activities in AMiR focus on the industrial microrobotics and nanoscale automation. The areas of research include nanohandling robots and systems; automated nanohandling methods; robot control methods for nanopositioning; fast vision feedback at nanoscale, etc. Prof. Fatikow introduces this rapidly developing research field, the motivation, the key research problems and industrial applications. He addresses the current work on an automated microrobot cell inside a scanning electron microscope (SEM). The latter serves as a powerful vision sensor and the work space for nanohandling robots equipped with application-specific tools. Major components – the piezo-driven nanohandling robots, the robot control system, the fast vision feedback – are discussed. Finally, current research projects in AMiR and related industrial applications are outlined. They include automated assembly of nanophotonic structures, nano-robotic handling of graphene, automated characterization of nanomaterials, and others.

 

https://www.uni-oldenburg.de/en/amir/

Journée de la Recherche – découvrez le potentiel scientifique de la faculté des sciences et technologies de Lille

Le 28 mai 2018 à 09h00
LILLIAD
Learning center innovation – Villeneuve d’Ascq

Abstract:

Riche de 9 départements de formation et 34 structures de recherche dont 27 sont labellisées CNRS, Inria, Inra et Inserm, la faculté des sciences et technologies développe une recherche de pointe et d’excellence.

Reconnue tant sur le plan régional, national, qu’international, la recherche à la faculté des sciences et technologies est le fruit de nombreuses collaborations scientifiques de premier plan avec des partenariats forts et interdisciplinaires issus des secteurs publics et privés.

Pour répondre aux enjeux sociétaux et aux défis technologiques de ce début de siècle, la faculté des sciences et technologies ambitionne de devenir l’un des acteurs majeurs dans le domaine de la recherche et de l’innovation dans ses deux aspects principaux que sont la recherche fondamentale et appliquée.

09h00 ACCUEIL – Espace événementiel
09h15 ALLOCUTIONS – Amphithéâtre A
10h15 CONFÉRENCES :
From Sea to Pharmacy: des ovocytes d’invertébrés marins à la clinique. Laurent Meijer, président de ManRos Therapeutics, directeur de recherche CNRS.
Une recherche de pointe à l’internationale
UMI CINTRA CNRS/NTU/THALES : une collaboration renforcée entre la France et Singapour. Philippe Coquet, professeur des universités.
LIA Nano-Synergetics : une collaboration renforcée entre la France et le Japon. Michel Sliwa, chargé de recherche CNRS.
12h30 COCKTAIL
14h00 CONFÉRENCES : L’interdisciplinarité au cœur de nos projets scientifiques
Success story de Norine ou l’heureuse rencontre de la microbiologie et de l’informatique. Maude Pupin, laboratoire CRIStAL et Valérie Leclère, Institut Charles Viollette.
Nanomédecine : livraison transdermique de médicaments : au-delà de l’état de l’art. Rabah Boukherroub, IEMN.
CLIMIBIO, un projet environnemental structurant et pluridisciplinaire des Hauts-de-France. Pascale Desgroux et Xavier Vekemans.
Information numérique tactile : une collaboration interdisciplinaire. Laurent Grisoni, IRCICA.
Labex CEMPI ou interactions entre mathématiques et physique : construire les outils pour penser la complexité. Alice-Barbara Tumpach, Laboratoire Paul Painlevé.

Programme de la journée

Inscription

Atelier consacré à la préparation des substrats pour l’épitaxie

     

du 22 au 24 mai 2018
IEMN – Villeneuve d’Ascq

Abstract:

La préparation des substrats (nettoyage, rugosité de surface, désoxydation, structuration, etc…) est une étape importante pour la qualité des couches semiconductrices épitaxiées. Elle est devenue cruciale alors que les recherches actuelles s’orientent vers des sujets tels que l’hétéroépitaxie sur Silicium, l’épitaxie latérale ou celle de nanostructures (par croissance sélective avec masque diélectrique, par gravure de la surface du substrat ou par dépôt de nanoparticules métalliques permettant la croissance catalysée de nanofils). Durant cet atelier du GDR PULSE, ces différentes thématiques seront abordées afin d’échanger à partir des présentations invitées sur nos différentes méthodes de préparation et sur les moyens les plus adéquats pour les caractériser.

affiche_atelier_epitaxie

https://atelier-pulse.sciencesconf.org

Thesis: Study of non-stoichiometric III-V semiconductors for sampling microwave signals

Thomas Demonchaux
Thesis defence

16 May 2018 at 10:30 a.m.
IEMN Amphitheatre - Villeneuve d'Ascq

Abstract:

Discovered in the late 1980s, low-temperature epitaxial gallium arsenide (GaAs-BT) has interesting properties for optoelectronic applications. Its properties are closely linked to the presence of point defects, the deep levels of which give lifetimes compatible with its use as an active layer in photo-switches. With the aim of improving current knowledge of the physical origin of the lifetime and thus optimising it, this thesis work involved carrying out an in-depth study of the material, in particular by combining macroscopic analyses with microscopic characterisation. It is divided into five chapters, the first of which presents the current state of knowledge of GaAs-BT, while the second describes the various techniques used in this study. The third chapter looks at the chemical composition of the low-temperature epitaxial layer and its structural characterisation by X-ray diffractometry. It reveals the growth of ternary or quaternary compounds highly diluted in phosphorus and indium and suggests the presence of V-element antisites. The presence of phosphorus raises the question of the chemical nature of these antisites. The next chapter aims to identify the point defects embedded in the material using low-temperature scanning tunneling microscopy. Although the majority of the defects differ from the antisites observed in the literature by having a negative charge state and a changing appearance when the tip passes through, an analysis of the imaging conditions as a function of temperature combined with ab-initio calculations indicates the preferential formation of arsenic antisites compared with phosphorus antisites. The final chapter is devoted to the characterisation of the material after annealing. The particularity of this section lies in the discovery that the antisites do not precipitate at a growth temperature of 325°C and therefore give the most interesting lifetimes for the desired applications.

Jury members :

Mr Alain Le Corre
Mr Georges Bremond
Mr Didier Stiévenard
Mr Stéphane Formont
Mr Bruno Grandidier
Mr Xavier Wallart
Professor, INSA Rennes
Professor, INSA Lyon
Director of Research, CNRS, IEMN
Engineer, Thalès
Director of Research, CNRS, IEMN
Director of Research, CNRS, IEMN
Rapporteur
Rapporteur
Member
Member
Director
Co-director

 

Seminar: RF-Sensors in Advanced Applications

Dr.-Ing. Christoph BAER & Ing. Birk HATTENHORST
Institute of Electronic Circuits
Ruhr-Universität Bochum, Universitätsstr. 150, ID 03/324
44780 Bochum - GERMANY

Monday 23 April 2018 at 2.00 pm
IEMN Boardroom - Villeneuve d'Ascq

Abstract:

RF-sensors and Radar systems found their way into civil and industrial applications decades ago. Since then, they reliably measure distances, velocities, and filling levels etc. contact free and with great accuracy. Lately, current trends and technological achievements pushed operating frequencies up to the millimeter wave range, which allows for the determination of various additional physical quantities. Consequently, these novel sensors can be utilized in numerous areas of process industry, civil protection, and daily life. Therefore, their main purpose will be the determination and investigation of environmental parameters that allow for the supervision of crucial system parameters and the interpretation of complex processes. The talk will give an overview on diverse RF-sensors for different applications, which were explored at the Ruhr-University Bochum within recent years. The presented sensor applications include: humanitarian demining, mmWave imaging, contact-free gas sensing, as well as dust and particle determination for process industry and natural hazard protection. Next to the introduction of the numerous areas of application, the different sensor designs will be explained and their field applicability verified. Moreover, opportunities regarding student exchanges between Ruhr-University and Lille University will be introduced and discussed.

About the lecturers:
Christoph Baer received his diploma and doctor degree in electrical engineering at Ruhr-University Bochum in 2009 and 2015, respectively. From 2006 to 2015 he worked as a research engineer on radar systems and radar applications with the Krohne Group in Duisburg, Germany. Currently, Dr. Baer is postdoctoral researcher and academic counselor with the Institute of Electronic Circuits at Ruhr-University Bochum. He is author or co-author of more than 60 international publications and holds 8 international patents. His research interests include ground penetrating radar systems and concepts, methods for humanitarian demining, RF-material characterization and synthesis, sensors for avalanche science, and industrial microwave sensors. Dr. Baer is chairman of the IEEE SIGHT Germany Section.

 

 

Birk Hattenhorst was born in Lübbecke, Germany, in 1989. He received the M.Sc. degree in electrical engineering from the Ruhr-University Bochum, Bochum, Germany, in 2014. He has been a Research Assistant with the Institute of Electronic Circuits, Ruhr-University Bochum, since 2014. His current research interests include microwave measurement techniques, radar technology, antenna design, meta-materials and material characterization.

Séminaire : Innovative Colloidal Nanostructures: Nanoplatelets and III-V Quantum Dots

tessier_mickaelDr Mickaël Tessier
Ghent university, Belgium

Mercredi 17 avril 2018 à 14h00
IEMN Boardroom - Villeneuve d'Ascq

Abstract:

Innovative Colloidal Nanostructures: Nanoplatelets and III-V Quantum Dots
Colloidal Quantum Dots (QDs) are semiconductor nanocrystals in the 1 to 10 nm size range synthesized by wet chemistry process. Because of these small sizes, QDs are subject to quantum-size effect. This effect leads to discrete transitions, much like in an atom or a molecule, with energies higher than the bulk and that are strongly dependent of the QDs sizes. This property has allowed QDs to emerge as a novel class of optoelectronic materials over the last 25 years. The most advanced application of colloidal QDs, at least from a research valorization perspective, is their commercial use in liquid crystal displays (LCDs). First launched in 2013, sales of QDs-enhanced LCDs are expected to achieve 18 million units in 2018.
a. Vials containing QDs of different sizes under UV light. The emitted color depends of the QDs sizes. b. Commercial QDs display (http://www.samsung.com/global/tv/).
Significant advances have been made in the synthesis of QDs since the beginning of the 1990s. The shape of the nanoparticles can now be finely controlled, and nanoparticles with various shapes have been synthesized. In particular, colloidal nanoplatelets are atomically flat nanostructures that present only one dimension of quantum confinement.1In this lecture, I first present how the nanoplateletssizeand composition can be perfectly controlled via inventive synthesis protocols and how theseparameters affects the nanoplatelets optical properties.(2–4)
To facilitate the use of nanocrystals in the industry, interest is shifting from the well-characterized cadmium-based QDs to cadmium-free alternatives such as indium phosphide. We recently proposed protocols based onaminophosphine-type precursors that allow for a cost efficient, up-scaled syntheses of indium phosphide(InP) QDs of different sizes.(5) A detailed understanding of the reaction chemistry is a key in the development of colloidal QDs synthesis. I present an investigation of chemical reactions leading to the formation of InP starting from aminophosphine-type precursors.(6) This mechanism is innovative in the sense that it points out a double role of the phosphorus precursor in the reaction as both a reducing agent and the source of the phosphorus needed to form InP. Its understanding furthers the general use of aminopnictogens for the
synthesis of III-V QDs.(7) Finally, I show that InP QDs can be processed in polymer layer and that their structure can be optimized in order to obtain more efficient and cheaper lighting devices.(8)

References
(1) Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Nat. Mater.2011, 10, 936–941.
(2) Tessier, M. D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Dubertret, B. Nano Lett.2013, 13, 3321–3328.
(3) Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.; Ithurria, S.; Dubertret, B. Nano Lett.2014, 14, 207–213.
(4) Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B. ACS Nano2012, 6, 6751–6758.
(5) Tessier, M. D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z. Chem. Mater.2015, 27, 4893–4898.
(6) Tessier, M. D.; De Nolf, K.; Dupont, D.; Sinnaeve, D.; De Roo, J.; Hens, Z. J. Am. Chem. Soc.2016, 138, 5923–5929.
(7) Grigel, V.; Dupont, D.; De Nolf, K.; Hens, Z.; Tessier, M. D. J. Am. Chem. Soc.2016, 138, 13485–13488.
(8) Dupont, D.; Tessier, M. D.; Smet, P. F.; Hens, Z. Adv. Mater.2017, 29, 1700686.

Les mardis de l’Innovation : L’enjeu global du stockage de l’énergie

pour l’avenir de l’internet des objets, des énergies alternatives et de la mobilité.
Christophe LETHIEN, Institut d’Electronique, de Microélectronique et de Nanotechnologie, Université de Lille, CNRS.
Les Mardis de l’innovation. 20 Mars 2018.

> Visionnez la conférence sur vimeo

 Véritable encyclopédie vivante de l’innovation à travers le monde, destinée aux acteurs de l’innovation. Les Mardis de l’Innovation sont des cours/conférences en format ouvert portant sur la culture de l’innovation et sa mise en œuvre entrepreneuriale. Depuis dix ans, 270 cours/conférences, plus de 600 professionnels formés, plus de 10 000 auditeurs libres, 200 témoignages d’entreprises parmi les plus innovantes au monde.

 

IEMN : CS Industry Award

Rewarding excellence, innovation and success

La compagnie ALLOS semiconductors s’est vu décerner un CS Award portant sur des travaux effectués en étroite collaboration avec l’équipe de recherche du Dr Farid Medjdoub de l‘Institut d’électronique, de microélectronique et de nanotechnologie. Les derniers résultats de l’IEMN démontrent notamment une tension de claquage de plus de 1400 V pour les mesures verticales et latérales sur le prochain produit d’ALLOS, l’épiwafer GaN-on-Si pour les appareils de 1200 V.