IEMN
  • Home
  • News
    • IEMN Newsletters
    • M2-Ingé Internships
    • Job offers
    • All news
  • The Institute
    • Presentation
    • Organization of the institute
    • The Scientific Department
    • The Technological Department
    • Administrative and financial management
    • Rules of procedure
    • Our commitments
  • The Research
    • Scientific departments
      • Nanostructured Materials and Components
      • Micro / nano optoelectronics
      • Telecommunications Technologies and Intelligent Systems
      • Acoustic
    • Research groups
    • Flagship
  • Scientific Production
    • IEMN publications
    • Scientific production resources
  • The platforms
    • CMNF - Central Platform for Micro Nano Manufacturing
      • Engraving and implantation pole
      • In Line Analysis Unit
      • Soft Lithography and Bio Microfluidics
      • Deposits and epitaxy division
      • Lithography Unit
      • Packaging Division
      • CMNF Staff
    • PCMP - Multi-Physics Characterization Platform
      • Scanning Probe Microscopy Facility
      • Hyperfrequency, Optical and Photonic Characterization (CHOP)
      • Advanced Communications Systems and Prototyping cluster (SigmaCOM)
      • Characterisation, ElectroMagnetic Compatibility and Prototyping Centre (C2EM)
      • PCMP Staff
    • Services offered by our platforms
  • Partnership - Valuation
    • Academic Collaborations
    • ANR Projects
    • Main international collaborations
    • Industrial partnerships
    • The joint IEMN-Industry laboratories
    • Startups
  • Research Training
    • After the thesis
      • Do a post-doc at the IEMN
      • Towards the world of business and industry
      • Become a teacher-researcher
      • Become a Researcher
      • Starting a business at IEMN
      • FOCUS on a SATT engineer from the IEMN
    • A thesis at IEMN
      • Thesis and HDR defenses
      • Thesis topics
      • Financing
      • Doctoral studies
    • Master - Engineer
      • Masters ULille
        • Master Life Sciences and Technologies graduate programme
        • Master Nanosciences and Nanotechnologies - Speciality ETECH
        • Master Networks and Telecommunications
      • UPHF-INSA Masters
        • Master in Embedded Systems and Mobile Communications Engineering
        • Master Cyber Defense and Information Security
        • Master in Materials, Control and Safety
        • Master in Image and Sound Systems Engineering
      • Partner/Tutoring Engineering Schools
      • M2-Ingé Internships
    • The Lille branch of the GIP-CNFM
    • Nano-École Lille
  • Contact Us
    • Location
    • Contact form
    • Staff directory
  • Our support
  • fr_FR
  • Rechercher
  • Menu Menu
NEWS

THESE : Sébastien AROULANDA – Co-intégration de HEMT GaN hyperfréquence normally-off avec des normally-on

Sébastien AROULANDA

Soutenance : 16 septembre 2020 à 9h30
IEMN Amphitheatre - Central Laboratory - Villeneuve d'Ascq

Jury :
  • Christophe GAQUIERE, Professeur, Université de Lille, Directeur de thèse
  • Susana PéREZ SANTOS, Professeur, Université de Salamanque, Examinateur
  • Jean-Marie BLUET, Professeur, INSA Lyon, Rapporteur
  • Jean-Claude DE JAEGER, Professeur, Université de Lille, CoDirecteur de thèse
  • Nathalie MALBERT, Professeur, Université de Bordeaux, Examinateur
  • François JULIEN, Directeur de recherche, Centre de Nanosciences et de Nanotechnologies (C2N), Rapporteur
  • Olivier PATARD, Ingénieur de recherche, Thales III/V lab, Examinateur
  • Nicolas DEFRANCE, Maître de conférences, Université de Lille, Examinateur
Summary:

Dans le cadre de la fabrication de dispositifs hyperfréquences, la fonctionnalité normally-off présente deux avantages : elle permet d’une part de s’affranchir de la source de tension négative pour les circuits intégrés monolithiques hyperfréquences (Monolithic Microwave Integrated Circuit – MMIC) et, d’autre part, la co-intégration de transistors normally-on et normally-off permettrait de réaliser des circuits logiques.
Ce manuscrit présente les travaux réalisés dans l’objectif de développer un procédé de fabrication de HEMT normally-off compatible avec la fabrication de normally-on, permettant ainsi leur co-intégration au sein de la même puce. Pour cela, deux technologies ont été étudiées : l’une basée sur la combinaison d’un recess de grille, d’une implantation de fluor sous la grille et d’un dépôt d’oxyde de grille et l’autre basée sur la nanostructuration de l’espace source-drain afin des réaliser des FinFET GaN. La première technologie nous as permis d’obtenir des transistors normally-off présentant une tension de seuil d’environ 1,4 V associée à une densité de courant maximale de 1 A/mm. Ces composants, bien que présentant des résultats satisfaisants, souffrent toutefois d’effets de pièges importants qui sont probablement dus à l’oxyde de grille et qui doivent absolument être réduits. La technologie FinFET était quant à elle une première au laboratoire et nécessite encore de nombreuses optimisations. Les transistors ainsi fabriqués présentent cependant des résultats prometteurs avec des topologies entrainant un décalage de la tension de seuil de + 3 V par rapport aux transistors de références et d’autres permettant de quasiment doubler la densité de courant de drain.

Abstract:

In the context of high frequency devices fabrication, normally-off transistors offer two benefits: they eliminate the need of a negative voltage supply in the case of Monolithic Microwave Integrated Circuit (MMIC) and would allow the fabrication of logic circuits if integrated with normally-on HEMT.
This manuscript exposes the work performed to develop a normally-off HEMT fabrication process compatible with the fabrication of normally-on transistors. To achieve this, we studied two technologies: one based on the combination of a gate recess, fluorine implantation under the gate and gate-oxide deposition while the other is based on the nanostructuration of the source-drain region in order to make GaN FinFET. The first process gave us normally-off transistors with threshold voltage of 1,4 V associated with current density of about 1 A/mm. However, these devices suffer from significant trap effects that are probably due to the gate oxide. The FinFET technology we have developed, as a first trial, still needs a lot of optimization but showed promising results. While a topology lead to an increase of the threshold voltage of about + 3 V compared to the reference, an other one lead to a doubling of the current density.

Logo
Cité Scientifique
Avenue Henri Poincaré
CS 60069
59 652 Villeneuve d'Ascq Cedex, France
CNRS Logo University of Lille Logo University Polytech Logo Junia Logo Centrale Lille Logo Renatech Logo RFnet Logo
Site map
Copyright Service ECM et pôle SISR 2024
  • Scientific production
  • Legal information
  • Privacy policy
Faire défiler vers le haut
fr_FR
fr_FR
en_GB
We use cookies to ensure you have the best experience on our website. If you continue to use this site, we will assume that you are happy with it.OKNoPrivacy policy