IEMN
  • Home
  • News
    • IEMN Newsletters
    • M2-Ingé Internships
    • Job offers
    • All news
  • The Institute
    • Presentation
    • Organization of the institute
    • The Scientific Department
    • The Technological Department
    • Administrative and financial management
    • Rules of procedure
    • Our commitments
  • The Research
    • Scientific departments
      • Nanostructured Materials and Components
      • Micro / nano optoelectronics
      • Telecommunications Technologies and Intelligent Systems
      • Acoustic
    • Research groups
    • Flagship
  • Scientific Production
    • IEMN publications
    • Scientific production resources
  • The platforms
    • CMNF - Central Platform for Micro Nano Manufacturing
      • Engraving and implantation pole
      • In Line Analysis Unit
      • Soft Lithography and Bio Microfluidics
      • Deposits and epitaxy division
      • Lithography Unit
      • Packaging Division
      • CMNF Staff
    • PCMP - Multi-Physics Characterization Platform
      • Scanning Probe Microscopy Facility
      • Hyperfrequency, Optical and Photonic Characterization (CHOP)
      • Advanced Communications Systems and Prototyping cluster (SigmaCOM)
      • Characterisation, ElectroMagnetic Compatibility and Prototyping Centre (C2EM)
      • PCMP Staff
    • Services offered by our platforms
  • Partnership - Valuation
    • Academic Collaborations
    • ANR Projects
    • Main international collaborations
    • Industrial partnerships
    • The joint IEMN-Industry laboratories
    • Startups
  • Research Training
    • After the thesis
      • Do a post-doc at the IEMN
      • Towards the world of business and industry
      • Become a teacher-researcher
      • Become a Researcher
      • Starting a business at IEMN
      • FOCUS on a SATT engineer from the IEMN
    • A thesis at IEMN
      • Thesis and HDR defenses
      • Thesis topics
      • Financing
      • Doctoral studies
    • Master - Engineer
      • Masters ULille
        • Master Life Sciences and Technologies graduate programme
        • Master Nanosciences and Nanotechnologies - Speciality ETECH
        • Master Networks and Telecommunications
      • UPHF-INSA Masters
        • Master in Embedded Systems and Mobile Communications Engineering
        • Master Cyber Defense and Information Security
        • Master in Materials, Control and Safety
        • Master in Image and Sound Systems Engineering
      • Partner/Tutoring Engineering Schools
      • M2-Ingé Internships
    • The Lille branch of the GIP-CNFM
    • Nano-École Lille
  • Contact Us
    • Location
    • Contact form
    • Annuaire Intranet
  • Our support
  • fr_FR
  • Rechercher
  • Menu Menu
NEWS

THESE : Katia HARROUCHE – Conception et réalisation de transistors à effet de champ à base de Nitrure de Gallium pour amplification de puissance jusqu’en bande W

Katia HARROUCHE

Soutenance : 16 Décembre 2021

Thèse de doctorat en Electronique, microélectronique, nanoélectronique et micro-ondes, Université de Lille, ENGSYS Sciences de l’ingénierie et des systèmes,
Associated project: RENATECH


Summary:

Au cours des dernières décennies, des progrès remarquables ont été réalisés sur les transistors à haute mobilité électronique à base de GaN (HEMTs GaN) destinés aux applications d’amplification et de commutation de puissance à haute fréquence. Actuellement, les HEMTs GaN les plus matures sont basés sur des hétérostructures AlGaN/GaN. Plus récemment, les hétérostructures à barrières ultrafines (<10 nm) (in)(ga)alngan riches en al ont également présentées beaucoup d’intérêt pour les applications gamme d’ondes millimétriques. effet, contrairement aux structures algan gan, barrièresultrafines peuvent fournir une densité d’électrons (2deg) deux fois plus élevée tout offrant un rapport d’aspect important (longueur de grille>Abstract:

Over the last decades, remarkable progress has been made on GaN-based high electron mobility transistors (GaN HEMTs) for high frequency power amplification and switching applications. Currently, the most mature GaN HEMTs are based on AlGaN/GaN heterostructures. More recently, Al-rich (In)(Ga)AlN/GaN ultra-thin barrier heterostructures (<10 nm) have also shown great interest for millimeter-wave applications. Indeed, unlike AlGaN/GaN structures, Al-rich ultrathin barriers can provide twice the electron density (2DEG) while offering a large aspect ratio (gate length/gate-channel distance) even with very short gates below 100 nm. Therefore, Al-rich GaN ultra-thin barrier HEMTs allow to operate at higher frequency in a robust manner. In this context, several research groups have demonstrated a unique combination of higher power and wider bandwidth up to 100 GHz by using GaN transistors compared to other technologies (GaAs or silicon). However, most applications require power amplifiers with very high efficiency combined with proven reliability and increased linearity. The state of the art of GaN HEMTs is limited today to about 50% PAE (Power Added Efficiency) and little work has been reported on the reliability of GaN devices using short gates smaller than 150 nm. Nevertheless, one of the major limitations of modern RF devices is the thermal dissipation. Indeed, the power dissipation improves by 80% when the PAE efficiency increases from 50% to 80%. The objective of this work is to provide a state-of-the-art technology in this field with the development and optimization of sub-150 nm GaN gate transistors for millimeter-wave range applications. In particular, we have optimized the buffer layers while optimizing a sub-5 nm AlN barrier in order to increase the power gain, improve the electron confinement under high electric field and simultaneously reduce the trapping effects. In addition, the development of a power measurement bench at 94 GHz has allowed to demonstrate a state-of-the-art power density at W-band with the fabricated components. This work provides a promising basis for ensuring high (including PAE efficiency) and reliable performance of GaN HEMTs for power amplification in the millimeter-wave range related to future 5G telecommunication, space or military applications. [/av_textblock]

Logo
Cité Scientifique
Avenue Henri Poincaré
CS 60069
59 652 Villeneuve d'Ascq Cedex, France
Tel : 03 20 19 79 79
CNRS Logo University of Lille Logo University Polytech Logo Junia Logo Centrale Lille Logo Renatech Logo RFnet Logo
Site map
Copyright Service ECM et pôle SISR 2024
  • Scientific production
  • Legal information
  • Privacy policy
Faire défiler vers le haut
fr_FR
fr_FR
en_GB
We use cookies to ensure you have the best experience on our website. If you continue to use this site, we will assume that you are happy with it.OKNoPrivacy policy