IEMN
  • Home
  • News
    • IEMN Newsletters
    • M2-Ingé Internships
    • Job offers
    • All news
  • The Institute
    • Presentation
    • Organization of the institute
    • The Scientific Department
    • The Technological Department
    • Administrative and financial management
    • Rules of procedure
    • Our commitments
  • The Research
    • Scientific departments
      • Nanostructured Materials and Components
      • Micro / nano optoelectronics
      • Telecommunications Technologies and Intelligent Systems
      • Acoustic
    • Research groups
    • Flagship
  • Scientific Production
    • IEMN publications
    • Scientific production resources
  • The platforms
    • CMNF - Central Platform for Micro Nano Manufacturing
      • Engraving and implantation pole
      • In Line Analysis Unit
      • Soft Lithography and Bio Microfluidics
      • Deposits and epitaxy division
      • Lithography Unit
      • Packaging Division
      • CMNF Staff
    • PCMP - Multi-Physics Characterization Platform
      • Scanning Probe Microscopy Facility
      • Hyperfrequency, Optical and Photonic Characterization (CHOP)
      • Advanced Communications Systems and Prototyping cluster (SigmaCOM)
      • Characterisation, ElectroMagnetic Compatibility and Prototyping Centre (C2EM)
      • PCMP Staff
    • Services offered by our platforms
  • Partnership - Valuation
    • Academic Collaborations
    • ANR Projects
    • Main international collaborations
    • Industrial partnerships
    • The joint IEMN-Industry laboratories
    • Startups
  • Research Training
    • After the thesis
      • Do a post-doc at the IEMN
      • Towards the world of business and industry
      • Become a teacher-researcher
      • Become a Researcher
      • Starting a business at IEMN
      • FOCUS on a SATT engineer from the IEMN
    • A thesis at IEMN
      • Thesis and HDR defenses
      • Thesis topics
      • Financing
      • Doctoral studies
    • Master - Engineer
      • Masters ULille
        • Master Life Sciences and Technologies graduate programme
        • Master Nanosciences and Nanotechnologies - Speciality ETECH
        • Master Networks and Telecommunications
      • UPHF-INSA Masters
        • Master in Embedded Systems and Mobile Communications Engineering
        • Master Cyber Defense and Information Security
        • Master in Materials, Control and Safety
        • Master in Image and Sound Systems Engineering
      • Partner/Tutoring Engineering Schools
      • M2-Ingé Internships
    • The Lille branch of the GIP-CNFM
    • Nano-École Lille
  • Contact Us
    • Location
    • Contact form
    • Staff directory
  • Our support
  • fr_FR
  • Rechercher
  • Menu Menu
NEWS

A trans-dermal patch for the treatment of chronic diseases such as diabetes.

Glycemic control, necessary to reduce chronic complications in type 1 diabetes, often requires multiple daily injections of insulin. The discomfort associated with the use of needles often leads diabetic patients to become discouraged or even neglect their own therapeutic management.

Today, several technological developments are underway to offer alternative solutions to compensate for (multiple) daily injections of insulin. Transdermal administration of insulin, a painless and simple approach, is an interesting alternative and presents several advantages such as the possibility of prolonged and on-demand treatment. However, the transdermal delivery of insulin is limited by the low permeability of the outermost epidermal layer (stratum corneum), which only allows the passage of hydrophobic molecules with a molecular weight below 500 Da.

In this work*, we have demonstrated the improvement of the permeability of the stratum corneum by thermal activation for insulin permeation. We have developed a new transdermal insulin delivery system that exploits the excellent electrothermal properties of a perforated gold thin film covered with an insulin-loaded graphene layer. By applying a low voltage (power less than 200 mW cm-2), it is possible to reach a stable temperature of 52°C in a few seconds, which allows the initiation of insulin delivery. This self-powered platform can use commercially available portable battery systems. Thus this transdermal patch, designed using simple technology, represents an advance in the treatment of chronic diseases such as diabetes for which effective and non-invasive insulin dosing remains a major challenge.

*Electrothermal patches driving the transdermal delivery of insulin

Quentin Pagneux, Ran Ye, Li Chengnan, Alexandre Barras, Nathalie Hennuyer, Bart Staels, D. Caina, J. I. Avila Osses, Amar Abderrahmani, Valérie Plaisance, Valérie Pawlowski, Rabah Boukherroub, Sorin Melinte and Sabine Szunerits

Nanoscale Horizons, 2020, 5, 663-670. https://doi.org/10.1039/C9NH00576E

Logo
Cité Scientifique
Avenue Henri Poincaré
CS 60069
59 652 Villeneuve d'Ascq Cedex, France
CNRS Logo University of Lille Logo University Polytech Logo Junia Logo Centrale Lille Logo Renatech Logo RFnet Logo
Site map
Copyright Service ECM et pôle SISR 2024
  • Scientific production
  • Legal information
  • Privacy policy
Faire défiler vers le haut
fr_FR
fr_FR
en_GB
We use cookies to ensure you have the best experience on our website. If you continue to use this site, we will assume that you are happy with it.OKNoPrivacy policy