IEMN
  • Home
  • News
    • IEMN Newsletters
    • M2-Ingé Internships
    • Job offers
    • All news
  • The Institute
    • Presentation
    • Organization of the institute
    • The Scientific Department
    • The Technological Department
    • Administrative and financial management
    • Rules of procedure
    • Our commitments
  • The Research
    • Scientific departments
      • Nanostructured Materials and Components
      • Micro / nano optoelectronics
      • Telecommunications Technologies and Intelligent Systems
      • Acoustic
    • Research groups
    • Flagship
  • Scientific Production
    • IEMN publications
    • Scientific production resources
  • The platforms
    • CMNF - Central Platform for Micro Nano Manufacturing
      • Engraving and implantation pole
      • In Line Analysis Unit
      • Soft Lithography and Bio Microfluidics
      • Deposits and epitaxy division
      • Lithography Unit
      • Packaging Division
      • CMNF Staff
    • PCMP - Multi-Physics Characterization Platform
      • Scanning Probe Microscopy Facility
      • Hyperfrequency, Optical and Photonic Characterization (CHOP)
      • Advanced Communications Systems and Prototyping cluster (SigmaCOM)
      • Characterisation, ElectroMagnetic Compatibility and Prototyping Centre (C2EM)
      • PCMP Staff
    • Services offered by our platforms
  • Partnership - Valuation
    • Academic Collaborations
    • ANR Projects
    • Main international collaborations
    • Industrial partnerships
    • The joint IEMN-Industry laboratories
    • Startups
  • Research Training
    • After the thesis
      • Do a post-doc at the IEMN
      • Towards the world of business and industry
      • Become a teacher-researcher
      • Become a Researcher
      • Starting a business at IEMN
      • FOCUS on a SATT engineer from the IEMN
    • A thesis at IEMN
      • Thesis and HDR defenses
      • Thesis topics
      • Financing
      • Doctoral studies
    • Master - Engineer
      • Masters ULille
        • Master Life Sciences and Technologies graduate programme
        • Master Nanosciences and Nanotechnologies - Speciality ETECH
        • Master Networks and Telecommunications
      • UPHF-INSA Masters
        • Master in Embedded Systems and Mobile Communications Engineering
        • Master Cyber Defense and Information Security
        • Master in Materials, Control and Safety
        • Master in Image and Sound Systems Engineering
      • Partner/Tutoring Engineering Schools
      • M2-Ingé Internships
    • The Lille branch of the GIP-CNFM
    • Nano-École Lille
  • Contact Us
    • Location
    • Contact form
    • Annuaire Intranet
  • Our support
  • fr_FR
  • Rechercher
  • Menu Menu
NEWS

THESE : KHACH HUY DINH – Fabrication de micro-supercondensateurs tout solide basés sur des films minces de nitrure de métaux de transition pour alimenter la nouvelle génération de l’Internet des Objets.»

Khac Huy Dinh

Defense: September 19, 2023 at 10:00 a.m.
Amphithéâtre Chevreuil - Cité scientifique - Villeneuve d'Ascq

Jury :

Valérie PRALONG, DR CNRS, CRISMAT – Caen Rapporteur
Pierre-Louis TABERNA, DR CNRS, CIRIMAT – Toulouse Rapporteur
Antonella IADECOLA, IR CNRS, RS2E – SOLEIL – Amiens Examinateur
Thierry BROUSSE, PR Univ. Nantes, IMN – Nantes Examinateur
Christophe LETHIEN, PR Lille Univ., IEMN – Lille Directeur de Thèse
Pascal ROUSSEL, DR CNRS, UCCS – Lille Co-directeur de Thèse

Summary:

La croissance rapide des applications de l’Internet des Objets (IoT) a entraîné une augmentation de la demande de dispositifs de stockage d’énergie. Les micro-supercondensateurs (MSCs) sont apparus comme des candidats prometteurs pour les applications à débit rapide en raison de leurs densités de puissance élevées, de leurs capacités à haut débit, de leurs longues durées de vie et de leur nature respectueuse de l’environnement. Toutefois, le principal défi à relever pour généraliser l’utilisation des MSCs dans l’industrie est leur densité énergétique relativement faible. Pour résoudre ce problème, diverses solutions ont été explorées pour améliorer la capacité ou la tension de la cellule en jouant avec le type d’électrolytes utilisés, les matériaux d’électrodes et les topologies de dispositifs afin d’obtenir des MSCs à haute performance. Cette thèse se concentre sur l’étude des matériaux d’électrode en couche mince fabriqués par pulvérisation cathodique magnétron. Plus précisément, un alliage ternaire de nitrure de vanadium et de tungstène (VWN), le nitrure de ruthénium (RuN) et les électrolytes à l’état solide ont été étudiés en tant que matériaux d’électrode pseudocapacitifs efficaces. Cette thèse a été réalisée dans le cadre du projet CAMISOL sélectionné par l’université de Lille dans le cadre du programme PEARL (Programme for EArly-stage Researchers in Lille) cofinancé par la Commission Européenne, dont la motivation était de fabriquer des micro-supercondensateurs asymétriques (AMSCs) à base de VN (ou VWN) // RuN à l’état solide. Des films minces de VWN ont été synthétisés en utilisant une approche de co-pulvérisation ou de multi-couches nanométriques, démontrant d’excellentes performances qui défient les meilleurs matériaux multicatoniques rapportés pour les condensateurs électrochimiques. Des techniques avancées de cartographie à l’échelle du wafer ont été employées pour corréler les propriétés structurales, électriques, mécaniques et électrochimiques des films avec les paramètres de dépôts utilisés. Cette approche offre de nouvelles perspectives et fournit un outil de caractérisation puissant pour la prochaine génération de matériaux électrochimiques fabriqués à l’Université de Lille avec des méthodes de dépôt de couches minces.
Dans la partie suivante, les films RuN ont été étudiés en tant que matériaux d’électrode efficaces, et une preuve de concept pour des MSC asymétriques VN // RuN à l’état solide a été présentée. Les paramètres de pulvérisation ont été soigneusement optimisés pour maximiser la porosité du film tout en maintenant une conductivité électrique élevée. Diverses techniques avancées ont été employées pour révéler la complexité de la structure et du mécanisme de stockage de charge des films RuN. Grâce à la fenêtre de travail complémentaire des films VN et RuN dans un électrolyte aqueux KOH 1M, la tension de cellule du dispositif AMSC VN // RuN a été considérablement augmentée, atteignant jusqu’à 1,15 V. Par conséquent, l’AMSC VN // RuN a démontré l’une des densités d’énergie les plus élevées rapportées jusqu’à présent pour les AMSCs basées sur des films minces de nitrure de métal de transition. Enfin, l’étude de l’utilisation d’un électrolyte à l’état solide, d’un électrolyte hydrogel PVA/KOH et de liquides ioniques dans la fabrication d’AMSC à l’état solide a été présentée.

Abstract:
The rapid growth of Internet of Things (IoT) applications has led in an increased demand for energy storage devices. Micro-supercapacitors (MSCs) have emerged as promising candidates for high-speed applications due to their high-rate capabilities, long cycle life and environmental friendliness. However, the main challenge to be addressed for the widespread industrial use of MSCs is their relatively low energy density. To address this issue, various solutions have been explored to increase the capacitance or the cell voltage by playing with the electrolyte used, electrode materials and device topologies to achieve high-performance MSCs. This work focuses on the investigation of thin film electrode materials prepared by magnetron sputtering deposition. In particular, vanadium tungsten nitride (VWN) and ruthenium nitride (RuN) have been investigated as efficient pseudocapacitive electrode materials. This work was carried out in the frame of the CAMISOL project selected by the Lille university through the PEARL program (Program for EArly-stage Researchers in Lille) cofunded by the European Commission, where the motivation was to fabricate solid-state VN (or VWN) // RuN asymmetric micro-supercapacitors (AMSC). VWN thin films were synthesized using co-sputtering and nanolaminate approaches and demonstrated excellent performance challenging the best multicatonic materials reported for MSCs. Advanced characterization mapping techniques were used to explore the correlation between the structural, electrical, mechanical, and electrochemical properties of the films. This approach offers new perspectives and provides a powerful characterization tool for the next generation of electrochemical materials fabricated by thin film deposition methods at Lille University.
In the following part of the thesis, RuN films were investigated as efficient electrode materials, and solid-state VN // RuN AMSC was presented as a proof of concept. Sputtering parameters were carefully optimized to maximize the film porosity while maintaining high electrical conductivity. Various advanced techniques were employed to reveal the complexity of the structure and charge storage mechanism of RuN films. Taking advantage from the complementary working window of VN and RuN films in a 1M KOH aqueous electrolyte, the cell voltage of the VN // RuN AMSC device was significantly increased, reaching up to 1.15 V. As a result, the VN // RuN AMSC exhibited one of the highest areal energy densities reported so far for AMSCs based on transition metal nitride thin films. Finally, the study of the use of solid-state electrolyte, PVA/KOH hydrogel electrolyte and ionic liquids in the fabrication of all-solid-state AMSCs was presented.
Logo
Cité Scientifique
Avenue Henri Poincaré
CS 60069
59 652 Villeneuve d'Ascq Cedex, France
Tel : 03 20 19 79 79
CNRS Logo University of Lille Logo University Polytech Logo Junia Logo Centrale Lille Logo Renatech Logo RFnet Logo
Site map
Copyright Service ECM et pôle SISR 2024
  • Scientific production
  • Legal information
  • Privacy policy
Faire défiler vers le haut
fr_FR
fr_FR
en_GB
We use cookies to ensure you have the best experience on our website. If you continue to use this site, we will assume that you are happy with it.OKNoPrivacy policy