Deux médailles d’argent CNRS décernées à deux chercheuses de l’IEMN

Lien : http://www2.cnrs.fr/presse/communique/5493.htm

Sabine Szunerits (à gauche) et Anne-Christine Hladky (à droite) ©Joaquim Dassonville

Comme chaque année, le Centre National de la Recherche Scientifique décerne la médaille d’argent afin de distinguer des chercheur.e.s pour l’originalité, la qualité et l’importance de leurs travaux, reconnus sur le plan national et international.

Parmi les vingt lauréat.e.s de l’année 2018 figure deux chercheures de l’IEMN (UMR 8520 – CNRS/Université de Lille/ISEN/UVHC/Centrale Lille) :

Sabine Szunerits, Spécialiste des biocapteurs et de la nano-médecine pour le traitement des infections virales et bactériennes ou l’hypothermie.
Professeure des Universités exerçant au sein du Département de Chimie de l’Université de Lille et au sein du groupe NanoBiointerface de l’IEMN a été distinguée par l’Institut de Chimie – INC.

Anne-Christine Hladky, Experte en métamatériaux acoustiques.
Directrice de Recherche au CNRS et responsable du groupe ACOUSTIQUE de l’IEMN a été distinguée par l’Institut des Sciences de l’Ingénierie et des Systèmes – INSIS.

Téléchargez le communique de Presse CNRS

L’IEMN et HORIBA JOBIN YVON s’associent pour créer une équipe mixte de recherche

HORIBA JOBIN YVON et l’Institut d’Electronique de Microélectronique et de Nanotechnologie (IEMN-CNRS) s’associent et créent une “équipe mixte” de recherche visant à développer des outils de caractérisation innovants ainsi que la caractérisation physico-chimique de nanomatériaux. Cette structure, financée par des crédits FEDER de la Région Hauts-de-France, soutient des actions de recherche engagées depuis 2012, notamment sur la fabrication de sondes micro-nano-fabriquées pour applications à la spectroscopie Raman dont HORIBA JOBIN YVON est leader mondial

La thématique de recherche de l’équipe mixte concernera le développement d’outils de caractérisation innovants ainsi que la caractérisation physico-chimique de nanomatériaux par techniques de microscopie à force atomique et de spectroscopie Raman et infrarouge à exaltation de pointe. Le travail portera à la fois sur le design et fabrication de nouvelles générations de sondes de microscopie champ proche par techniques de micro et nano-fabrication, et un travail de nano-caractérisation avancée de propriétés physico-chimiques de matériaux nouveaux.

Références

 HORIBA JOBIN YVON est l’un des plus importants fabricants de systèmes et composants de spectroscopie et d’analyses. L’entreprise est leader mondial en spectroscopie Raman. Elle conçoit et fabrique à Villeneuve d’Ascq des appareils à la pointe de la technologie depuis plus de 50 ans. Les équipes de R&D et du laboratoire d’applications HORIBA Villeneuve d’Ascq travaillent actuellement sur le “nano-Raman”, technique exploitant l’effet d’exaltation de pointe (“Tip Enhanced Raman Spectroscopy” ou TERS) et qui permet d’apporter à la spectroscopie Raman la résolution spatiale nanométrique des techniques de microscopie champ proche comme la microscopie à force atomique. http://www.horiba.com/fr/

L’IEMN (UMR8520, CNRS – Université de Lille – Université de Valenciennes et du Hainaut-Cambrésis – Centrale Lille et ISEN-yncréa) a une expertise reconnue internationalement en micro et nano-fabrication (l’IEMN est membre du réseau RENATECH), ainsi qu’en microscopie champ proche. L’IEMN a été lauréat en 2012 d’un PIA EQUIPEX Excelsior (www.excelsior-ncc.eu) couplant la microscopie champ proche aux excitations électriques et/ou optiques du continu au THz. Dans ce contexte, l’IEMN a développé des actions de recherche couplant microscopie champ proche et optique (par exemple SNOM infrarouge ou Terahertz, micro et nano-fabrication de cantilevers), et engagé une activité de recherche en convergence avec les applications visées par la société HORIBA.

Contacts

Chercheur l  Thierry Mélin l T 04 32 50 06 59 l thierry.melin@univ-lille1.fr
Presse CNRS l Stéphanie Barbez l T 03 20 12 28 18l stephanie.barbez@cnrs.fr
Presse Université de Lille l Cristelle Fontaine l T 03 20 96 52 57l cristelle.fontaine@univ-lille2.fr

 

Un chercheur de l’IEMN, lauréat de l’ERC Grant

Trois chercheurs de la délégation Nord-Pas de Calais et Picardie figurent parmi les lauréats de l’appel à projets ERC Consolidator Grant 2017. Il s’agit de :

Fabien Alibart (IEMN) pour son projet “An ionoelectronic neuromorphic interface for communication with living systems “;

Alejandro Franco (LRCS) pour son projet ” Advanced and Reusable Theory for the In Silico-optimization of composite electrode fabrication processes for rechargeable battery Technologies with Innovative Chemistries “;

Anne-Virginie Salsac (BMBI) pour son projet ” Multiphysics study of the dynamics, resistance and targeted therapy potential of deformable Micro-Capsules “.

Ces projets, d’une durée de 5 ans, débuteront en janvier 2018 et recevront un financement respectif de 1,5 millions d’euros, afin de mener à bien des projets de recherche exploratoire.

Les résultats par pays et par domaine se déclinent ainsi :

Sciences Physiques et Ingénierie (PE) : la France se classe en 2ème position avec 30 lauréats, derrière le Royaume-Uni (32) et devant l’Allemagne (24). ;

Sciences de la Vie (LS) : la France est 4ème avec 14 lauréats, derrière l’Allemagne (32), le Royaume-Uni (18) et l’Israël (16) ;

Sciences Humaines et Sociales (SH) : avec 9 lauréats, la France est 4ème, derrière le Royaume-Uni (29), les Pays-Bas (18) et l’Allemagne (11).

Avec 275 propositions soumises en France et 53 lauréats, le taux de succès français pour cet appel s’élève à 19%, soit 6 points au dessus de la moyenne européenne.

Une galerie des murmures dans une goutte d’eau


Les ondes acoustiques peuvent servir à contrôler, agiter et mélanger les fluides avec une extrême précision. Des chercheurs de l’Institut d’électronique, de microélectronique et de nanotechnologie, du laboratoire Matière et systèmes complexes et de l’Institut des nanosciences de Paris ont expliqué comment ces ondes pouvaient induire la formation de tourbillons à l’échelle d’une goutte d’eau. Ce mécanisme se rapproche du phénomène acoustique de la galerie des murmures. Ces travaux sont publiés dans Journal of Fluid Mechanics, où ils sont mis en avant par un Focus on Fluids.

Très prisée dans le domaine biomédical, la microfluidique consiste à manipuler de très faibles volumes de liquides. Si les mélanges restent une opération complexe à ces échelles, ils peuvent être réalisés à l’aide d’ondes acoustiques de surface. Ces ondes, d’une fréquence de l’ordre du mégahertz, transfèrent graduellement leur quantité de mouvement au fluide, qui s’agite alors avec une formation de microtourbillons. Des chercheurs de l’Institut d’électronique, de microélectronique et de nanotechnologie (IEMN, CNRS/Université Lille 1/ISEN Lille/Université Valenciennes/UVHC/École Centrale Lille), du laboratoire Matière et systèmes complexes (MSC, CNRS/Université Paris Diderot) et de l’Institut des nanosciences de Paris (INSP, CNRS/UPMC) ont mis en évidence des topologies particulières de tourbillons, issues d’un phénomène apparenté à une galerie des murmures. Dans cette curiosité architecturale, un son peut être perçu sur de longues distances en raison de sa focalisation le long de voûtes. Deux personnes peuvent ainsi discuter à voix basse de chaque côté de certaines coupoles.

Ici, des calculs numériques ont dévoilé la focalisation d’un groupe d’ondes qui se propagent sur des orbites périodiques le long de la surface de la goutte. Elles sont en effet entièrement réfléchies quand elles atteignent le bord intérieur de la goutte, soit l’interface entre l’air et le liquide, et sont guidées en boucles elliptiques. La forme de calotte sphérique de la goutte, façonnée par sa tension de surface, est à l’origine de cette concentration des ondes sur trois «?caustiques?», qui sont des sortes de lignes focales. Cette disposition très hétérogène du champ acoustique force l’écoulement interne à adopter une structure particulière, constituée d’une ou deux paires de tourbillons. Ce sont eux qui permettent un mélange efficace au sein de la goutte.

Galerie des murmures dans une gouttelette. (A-B) trajectoire des rayons acoustiques guidés par la surface de la goutte. (C) Simulation des courants acoustiques générés par les galeries des murmures. (© IEMN – MSC – INSP)

Références :
On the influence of viscosity and caustics on acoustic streaming in sessile droplets: an experimental and a numerical study with a cost-effective method
A. Riaud, M. Baudoin, O. Bou Matar, J.-L. Thomas & P. Brunet,
Journal of Fluid Mechanics (juillet 2017)
DOI: https://doi.org/10.1017/jfm.2017.178

 

Contact chercheur :
Antoine Riaud

Contact communication INSIS :
insis.communication@cnrs.fr

IEMN, l’ultra haut débit en test mondial pour préparer l’arrivée de la 5G et d’un Wi-Fi boosté

Un potentiel énorme par rapport aux ondes radio classiques

«  Buuut !  » signale le commentateur lors d’un match de foot en direct à la télévision. Mais saviez-vous que la transmission du but arrivait sur vos écrans quelques secondes après l’action réelle dans le stade ?

Des « vrais » directs

Un nouveau système de communication ultra-rapide pourrait changer la donne et vous faire connaître enfin les sensations d’un « vrai » direct. Son nom : le Térahertz, une technologie dont le premier essai mondial en extérieur a eu lieu sur les toits de Dunkerque. «  On cherche à créer une communication sans fil la plus rapide possible, à très courte distance – moins de 700 mètres – et avec une fréquence de 300 GHz. C’est la première démonstration mondiale à cette fréquence et à cette distance », explique Guillaume Ducournau, coordinateur du projet, sur lequel il travaille depuis huit ans, à l’institut d’électronique et microélectronique et nanotechnologies de l’université Lille 1. «  On utilise les ondes térahertz, qui offrent un potentiel énorme par rapport aux ondes radio classiques  ».

Un émetteur avait été installé au troisième étage du bâtiment du remorquage, près de l’hôtel des technologies, et un récepteur (notre photo) sur les toits du laboratoire IRenE, plateforme d’innovation technologique de l’Université du Littoral, située avenue Schumann. «  Il y a vingt ans, c’était de la science-fiction !  », commente Éric Fertein, chercheur au laboratoire de physico-chimie de l’atmosphère de Dunkerque, soutien de l’opération.

Des applications pour la santé, les transports…

Le développement d’un nouveau système de communication ultra-rapide est devenu inévitable dans la perspective de l’arrivée en 2020 de la 5G. «  Aujourd’hui, pour le Wi-Fi, on fonctionne avec une fréquence de 2,4 GHz, ce qui limite le débit. Avec le Térahertz, on est à 300 GHz ! D’ici à 2025, on pourrait ainsi multiplier le débit Wi-Fi par 100 voire 1 000. On passerait au TiFi, en référence aux ondes térahertz  », souligne Guillaume Ducournau. Des transmissions de données ultra-rapides, plus de décalage entre l’action et la retransmission, plus de câbles à tirer pour alimenter les caméras…

Ce qui ouvre le champ à de multiples applications : «  Par exemple, dans les salles de chirurgie, plus besoin de marcher sur des tonnes de câbles pour une opération à distance en direct, illustre Guillaume Ducournau. Un avion qui viendrait se garer à sa porte d’embarquement et qui aurait besoin de télécharger énormément de données, pourrait le faire en quelques secondes. Et que dire des télés qui seraient en flux réel ! C’est une fierté de faire ce premier pas à Dunkerque.  » Le brevet et la commercialisation de la technologie pourraient suivre, d’ici quelques années.

Les télés dans les starting-blocks

Les ondes térahertz pourraient bien changer la vie des diffuseurs télé et de leurs techniciens, notamment lors des grands événements sportifs.

Des kilomètres de câbles

«  Actuellement, pour la retransmission de Roland Garros, on doit tirer dix kilomètres de câbles pour brancher les caméras, trente kilomètres pour la dernière étape du Tour de France à Paris. C’est un travail d’installation énorme, qui dure deux jours. Pour le Tour de France, on laisse même les câbles toute l’année pour éviter d’avoir à les acheminer l’année suivante  », explique Pascal Duquenne, responsable production France 3 basé à Lambersart. L’arrivée du mode de retransmission térahertz, beaucoup plus rapide, «  fera disparaître tous les câbles. Ce sera un gain de temps et d’argent pour les télévisions  ».

À tel point d’ailleurs que les Japonais se sont déjà saisis de la technologie en 2008 lors des Jeux Olympiques de Pékin, mais à une fréquence et à une distance moindre que celles testées à Dunkerque mardi. Les techniciens nippons comptent bien réitérer l’expérience en 2020 pour les Jeux de Tokyo.

A. N. (Extrait de La Voix du Nord,  14 juin 2017)

Vmicro, spinoff de l’IEMN réalise la configuration verticale du premier microscope de champ proche de l’histoire

APPLIED PHYSICS LETTERS 110, 243101 (2017) [http://dx.doi.org/10.1063/1.4985125]

Instrumentation aux limites : le nouveau microscope à force atomique renouvelé par les capteurs micro-et nano- systèmes, basé sur un microsystèmes

Les microscopes sont des outils de travail quotidiens dans des domaines tels que l’électronique, la chimie, la métallurgie, les sciences de la vie, la recherche en physique. Disposer de microscopes performants est indispensable pour créer de nouvelles filières technologiques (qualifier les matériaux, les procédés) ou encore poser un diagnostic. Bien que très répandus, les microscopes optiques ne suffisent pas toujours à fournir la résolution nécessaire a cause des limites imposées par la diffraction de la lumière.

Une troisième famille de microscopes, dits à sondes locales, a vu le jour dans les années 1980. La technologie la plus répandue est le microscope à force atomique ou AFM pour Atomic Force Microscope. Son principe revient à remplacer le sens de la vue par celui du toucher. Une nano-pointe balaye la surface à observer ligne par ligne, à la manière des non-voyants lisant le braille. La pointe renvoie une mesure de force, et, en assemblant toutes les lignes, le microscope reconstitue une image de la surface. Grâce aux micro-technologies, on sait fabriquer depuis 1985 des pointes extrêmement fines. Cela confère au microscope AFM une résolution lui permettant de voir des nanostructures, des atomes individuels, ou encore des molécules (ADN, protéines). Cependant, jusqu’à maintenant le capteur de force qui fait le lien entre la pointe et la tête de l’appareil avait très peu évolué: il limitait fortement la rapidité de la mesure et nécessitait une instrumentation optique macroscopique qui constitue souvent un verrou.

Depuis 2005, les travaux de l’IEMN sur des technologies MEMS (Micro-Electro-Mechanical-Systems ont permis d’explorer une instrumentation basée sur des capteurs renouvelés. Cette approche est repartie à la base par la conception micromécanique de résonateurs à pointes, puis s’est poursuivie sur les aspects instrumentaux.

En 2015, la société Vmicro a été créée en tant que spin-off du laboratoire et poursuit le développement de ces sondes en optimisant toutes les étapes de fabrication en salle blanche, afin de mettre sur pied une production compatible avec les exigences des utilisateurs d’AFM issus de domaines très variés, de la science des surfaces aux biologistes. L’entreprise collabore à travers plusieurs projets avec l’IEMN et une publication commune vient de concrétiser un nouveau saut technologique.

Les chercheurs et ingénieurs ont développé une micro-sonde verticale basée sur un résonateur qui permet de contrôler le mouvement de la pointe de façon optimale et ce à des fréquences de plusieurs mégahertz. Une version plus miniature en technologie NEMS est aussi présentée dans l’article.

Le nouveau capteur, nommé Vprobe, a été utilisé dans un microscope commercial modifié et a été testé avec succès en conditions réelles, aux limites instrumentales permises par le montage. Avec une pointe très élancée, la Vprobe réalise enfin la configuration verticale du premier microscope de champ proche de l’histoire, le STM (scanning tunneling microscope) mais avec les atouts de l’AFM. Des transducteurs inventés pour l’occasion permettent de travailler à très faible impédance.

Référence : Atomic force microscope based on vertical silicon probe – APPLIED PHYSICS LETTERS 110, 243101 (2017)

Benjamin Walter,1 Estelle Mairiaux,1 and Marc Faucher1,2

1 – Vmicro SAS, Avenue Poincaré, 59650 Villeneuve d’Ascq, France
2 – Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS UMR 8520, Univ. Lille

 ABSTRACT : A family of silicon micro-sensors for Atomic Force Microscope (AFM) is presented that allows to operate with integrated transducers from medium to high frequencies together with moderate stiff- ness constants. The sensors are based on Micro-Electro-Mechanical-Systems technology. The verti- cal design specifically enables a long tip to oscillate perpendicularly to the surface to be imaged. The tip is part of a resonator including quasi-flexural composite beams, and symmetrical transducers that can be used as piezoresistive detector and/or electro-thermal actuator. Two vertical probes (Vprobes) were operated up to 4.3 MHz with stiffness constants 150 N/m to 500 N/m and the capa- bility to oscillate from 10 pm to 90 nm. AFM images of several samples both in amplitude modula- tion (tapping-mode) and in frequency modulation were obtained. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4985125]

SEM images of two micro-fabricated Vprobes.

(a) Vprobe n”1 made on 5 lm device layer SOI wafer: operating frequency 1.18 MHz, stiffness 500 N/m. On this probe, the tip has an electrical access, thanks to metal lines deposited onto lateral beams 4,5.

(b) More miniaturized device Vprobe n”2 made on 500nm thick SOI: operating frequency 4.3 MHz, 150 N/m.

(c) Integrated high aspect ratio silicon tip obtained on Vprobe 1

(d) zoom at the tip apex.

 

 

 

 

Offre d’emploi : Post Doc “Développement d’antennes et métamatériaux textiles pour la récupération de l’énergie électromagnétique ambiante”

Read more

Job offer: Engineer Position in Near field Microscopy and Instrumentation

In the frame of a H2020 (end-2017 to end-2020) large project gathering 8 European partners, we have a research engineer position having an expertise on near field microscopy (AFM, STM, …) based techniques and instrumentations.

The job consists to contribute to the development of a new Scanning Microwave Microscope (SMM= AFM + Microwave instrumentations) and associated control systems (Nanonis controller, vector network analyzer…). The recruited person will also participate to campaign of SMM imaging of thin film advanced materials and nanodevices for photovoltaic applications

This activity is located in the nanocharacterization center (1100m2 of new clean room spaces) of the IEMN (jointed CNRS-University of Lille Academic Institute).


• The duration of this position is of 18 Months extensible to 24 Months.
• This job will be available on beginning of December 2017.
→ Please send your CV and motivations by email to sophie.eliet@iemn.univ-lille1.fr.


Eligibility criteria
Master or Engineer degree with expertise on Scanning Probe Microscopy (SPM) and associated instrumentations as well as SPM imaging treatment.

Selection process
The selection will be based on the CV and telephone or on-site interview.

Skills/Qualifications
The candidate must have a experience on Near field Microscopy and associated instrumentations (controler).
The candidate must have serious knowledges on software dedicated for instrumentation control (e.g. Labview) and AFM imaging (e.g. Gwyddion).

Specific Requirements
An experience on microwave instrumentation will be an added skill.

 

Offre d’emploi : Ingénieur de Recherche en Micro-fluidique expérimentale, Instrumentation électronique, et prototypage rapide

Dans le cadre d’un projet de maturation SATT NORD, nous recherchons des candidats pour un poste IR dans le groupe AIMAN-FILMS/(LIA LICS-IEMN). Comme indiqué dans le profil ci-dessous, le candidat devra avoir un très bon niveau de connaissances en micro-fluidique expérimentale, Instrumentation électronique, et prototypage rapide.

 

La SATT Nord (Société d’Accélération du Transfert de Technologie) est une société d’investissement filiale des établissements de recherche et d’enseignements supérieurs des Hauts-de-France et de Champagne-Ardenne. La société a pour mission de faciliter l’exploitation sous forme de licensing ou de création d’entreprises, par les acteurs économiques, des innovations issues des laboratoires de recherche du périmètre considéré.

Dans le cadre de son développement, la société, dont le siège est à Lille, recherche un : Ingénieur en Mécanique des Fluides h/f CDI de Chantier basé à Lille (59)

Mots clés : Mécanique des fluides.

Contexte :
Le projet de maturation d’une durée évaluée à 24 mois porte sur la mise au point d’un design optimal de micro-pompe à membrane par commande électro-magnétique. L’objectif du projet est d’atteindre des caractéristiques techniques pour une application définie en réalisant un prototype avancé satisfaisant les cahiers des charges fonctionnels.
Votre mission :
Sous la direction du responsable scientifique du projet, l’ingénieur(e) sera en charge de réaliser un banc de caractérisation automatisé de micropompes, de les caractériser sur le banc lors d’un plan d’expérience, d’optimiser l’actionnement magnétique, de réaliser des tests de mises en série/parallèle et de produire les rapports de synthèses des résultats.

L’ingénieur(e) sera placé sous l’autorité hiérarchique de la SATT NORD.

Votre profil :
Docteur(e) / Ingénieur(e) en mécanique des fluides avec une expertise en micro-fluidique, prototypage rapide, et instrumentation (acquisition et traitement des données, imagerie optique des écoulements). Votre première expérience professionnelle sera un atout quant à une intégration rapide.

Rémunération : selon profil et expérience

Prise de fonction : Le poste est à pourvoir à Lille à compter du mois septembre 2017.

Contact : M. François CARPENTIER – Responsable Ressources Humaines – francois.carpentier@sattnord.fr Réf : 2017-MICROPOMPE-MECA

Merci d’envoyer vos candidatures à : abdelkrim.talbi@iemn.univ-lille1.fr , philippe.pernod@iemn.univ-lille1.fr, farzam.zoueshtiagh@univ-lille1.fr