Séminaire : Innovative Colloidal Nanostructures: Nanoplatelets and III-V Quantum Dots

tessier_mickaelDr Mickaël Tessier
Ghent university, Belgium

Mercredi 17 avril 2018 à 14h00
IEMN Salle du conseil – Villeneuve d’Ascq

Abstract :

Innovative Colloidal Nanostructures: Nanoplatelets and III-V Quantum Dots
Colloidal Quantum Dots (QDs) are semiconductor nanocrystals in the 1 to 10 nm size range synthesized by wet chemistry process. Because of these small sizes, QDs are subject to quantum-size effect. This effect leads to discrete transitions, much like in an atom or a molecule, with energies higher than the bulk and that are strongly dependent of the QDs sizes. This property has allowed QDs to emerge as a novel class of optoelectronic materials over the last 25 years. The most advanced application of colloidal QDs, at least from a research valorization perspective, is their commercial use in liquid crystal displays (LCDs). First launched in 2013, sales of QDs-enhanced LCDs are expected to achieve 18 million units in 2018.
a. Vials containing QDs of different sizes under UV light. The emitted color depends of the QDs sizes. b. Commercial QDs display (http://www.samsung.com/global/tv/).
Significant advances have been made in the synthesis of QDs since the beginning of the 1990s. The shape of the nanoparticles can now be finely controlled, and nanoparticles with various shapes have been synthesized. In particular, colloidal nanoplatelets are atomically flat nanostructures that present only one dimension of quantum confinement.1In this lecture, I first present how the nanoplateletssizeand composition can be perfectly controlled via inventive synthesis protocols and how theseparameters affects the nanoplatelets optical properties.(2–4)
To facilitate the use of nanocrystals in the industry, interest is shifting from the well-characterized cadmium-based QDs to cadmium-free alternatives such as indium phosphide. We recently proposed protocols based onaminophosphine-type precursors that allow for a cost efficient, up-scaled syntheses of indium phosphide(InP) QDs of different sizes.(5) A detailed understanding of the reaction chemistry is a key in the development of colloidal QDs synthesis. I present an investigation of chemical reactions leading to the formation of InP starting from aminophosphine-type precursors.(6) This mechanism is innovative in the sense that it points out a double role of the phosphorus precursor in the reaction as both a reducing agent and the source of the phosphorus needed to form InP. Its understanding furthers the general use of aminopnictogens for the
synthesis of III-V QDs.(7) Finally, I show that InP QDs can be processed in polymer layer and that their structure can be optimized in order to obtain more efficient and cheaper lighting devices.(8)

(1) Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Nat. Mater.2011, 10, 936–941.
(2) Tessier, M. D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Dubertret, B. Nano Lett.2013, 13, 3321–3328.
(3) Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.; Ithurria, S.; Dubertret, B. Nano Lett.2014, 14, 207–213.
(4) Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B. ACS Nano2012, 6, 6751–6758.
(5) Tessier, M. D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z. Chem. Mater.2015, 27, 4893–4898.
(6) Tessier, M. D.; De Nolf, K.; Dupont, D.; Sinnaeve, D.; De Roo, J.; Hens, Z. J. Am. Chem. Soc.2016, 138, 5923–5929.
(7) Grigel, V.; Dupont, D.; De Nolf, K.; Hens, Z.; Tessier, M. D. J. Am. Chem. Soc.2016, 138, 13485–13488.
(8) Dupont, D.; Tessier, M. D.; Smet, P. F.; Hens, Z. Adv. Mater.2017, 29, 1700686.

Séminaire : RF-Sensors in Advanced Applications

Dr.-Ing. Christoph BAER & Ing. Birk HATTENHORST
Institute of Electronic Circuits
Ruhr-Universität Bochum, Universitätsstr. 150, ID 03/324
44780 Bochum – GERMANY

Lundi 23 April 2018 à 14h00
IEMN Salle du conseil – Villeneuve d’Ascq

Abstract :

RF-sensors and Radar systems found their way into civil and industrial applications decades ago. Since then, they reliably measure distances, velocities, and filling levels etc. contact free and with great accuracy. Lately, current trends and technological achievements pushed operating frequencies up to the millimeter wave range, which allows for the determination of various additional physical quantities. Consequently, these novel sensors can be utilized in numerous areas of process industry, civil protection, and daily life. Therefore, their main purpose will be the determination and investigation of environmental parameters that allow for the supervision of crucial system parameters and the interpretation of complex processes. The talk will give an overview on diverse RF‐sensors for different applications, which were explored at the Ruhr‐University Bochum within recent years. The presented sensor applications include: humanitarian demining, mmWave imaging, contact‐free gas sensing, as well as dust and particle determination for process industry and natural hazard protection. Next to the introduction of the numerous areas of application, the different sensor designs will be explained and their field applicability verified. Moreover, opportunities regarding student exchanges between Ruhr-University and Lille University will be introduced and discussed.

About the lecturers:
Christoph Baer received his diploma and doctor degree in electrical engineering at Ruhr-University Bochum in 2009 and 2015, respectively. From 2006 to 2015 he worked as a research engineer on radar systems and radar applications with the Krohne Group in Duisburg, Germany. Currently, Dr. Baer is postdoctoral researcher and academic counselor with the Institute of Electronic Circuits at Ruhr-University Bochum. He is author or co-author of more than 60 international publications and holds 8 international patents. His research interests include ground penetrating radar systems and concepts, methods for humanitarian demining, RF-material characterization and synthesis, sensors for avalanche science, and industrial microwave sensors. Dr. Baer is chairman of the IEEE SIGHT Germany Section.



Birk Hattenhorst was born in Lübbecke, Germany, in 1989. He received the M.Sc. degree in electrical engineering from the Ruhr-University Bochum, Bochum, Germany, in 2014. He has been a Research Assistant with the Institute of Electronic Circuits, Ruhr-University Bochum, since 2014. His current research interests include microwave measurement techniques, radar technology, antenna design, meta-materials and material characterization.

Séminaire : Molecular spin coupling at the tip of a STM

Par Laurent Limot
chercheur CNRS à l’IPCMS à Strasbourg
Contact : limot@ipcms.unistra.fr

Mercredi 16 avril 2018 à 10h30
IEMN Salle du conseil – Villeneuve d’Ascq


Abstract :

Recent advances in addressing and controlling the spin states of a surface-supported object (atom or molecule) have further accredited the prospect of quantum computing and of an ultimate data-storage capacity [1]. Information encoding requires that the object must possess stable magnetic states, in particular magnetic anisotropy to yield distinct spin-dependent states in the absence of a magnetic field together with long magnetic relaxation times. Scanning probe techniques have shown that inelastic electron tunneling spectroscopy (IETS) within the junction of a scanning tunneling microscope (STM) is a good starting point to study the stability of these spin states [2]. STM-IETS allows for an all-electrical characterization of these states by promoting and detecting spin-flip excitations within the object of interest. As spin excitations need however to be preserved from scattering events with itinerant electrons, single objects are usually placed on non-metallic surfaces such as thin-insulating layers or superconductors. In this sense, new approaches to improve the detection of spin-flip excitations are desirable. With this purpose we present here a novel strategy based on the molecular functionalization of a STM tip. We study the surface magnetism of a simple doubledecker molecule, nickelocene [Ni(C5H5)2], which is adsorbed directly on a copper surface. By means of X-ray magnetic circular dichroism and density functional theory calculations, we show that nickelocene on the surface is magnetic (Spin = 1) and possesses a uniaxial magnetic anisotropy, while IETS reveals an exceptionally efficient spin-flip excitation occurring in the molecule [3]. Interestingly, nickelocene preserves its magnetic moment and magnetic anisotropy not only on the surface, but also in different metallic environments. Taking advantage of this robustness, we are able to functionalize the STM tip with a nickelocene [3,4], which can then be employed as a portable source of inelastic excitations. As we will show during the talk, IETS can then be used to probe the interaction between a surface-supported object and the nickelocene tip, including a magnetic interaction.

M. Ormaza1, P. Abufager2, B. Verlhac1, N. Bachellier1, M.-L. Bocquet3, N. Lorente4, and Laurent Limot1,*
1Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
2Instituto de Física de Rosario, CONICET, Universidad Nacional de Rosario, Argentina
3Ecole Normale Supérieure, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
4CFM/MPC and DIPC, 20018 Donostia-San Sebastián, Spain

[1] F.D. Natterer et al., Nature 543, 226 (2017); T. Choi et al., Nat. Nanotech. 6 (2017)
[2] A.J. Heinrich, J.A. Gupta, C.P. Lutz, and D.M. Eigler, Science 306, 466 (2004)
[3] M. Ormaza et al., Nano Lett. 17, 1877 (2017)
[4] M. Ormaza et al., Nat. Commun. 8, 1974 (2017)




Conference : Prototype of Terahertz Communications at 300 GHz: Devices, Packages


Dr. HO-JIN SONG, Pohang University of Science and Technology (POSTECH)

Tuesday 5 April at 10h30

Conférence 10:30
Anfiteather – IEMN-LCI Institut d’Electronique, de Microélectronique et de Nanotechnologie U.M.R C.N.R.S 8520 – Laboratoire Central – Cité Scientifique – Avenue Poincaré – CS 60069 – 59652 VILLENEUVE D’ASCQ CEDEX



Read more

Séminaire : A propos de la dynamique non régulière

Par Alain Léger
Directeur de Recherche au CNRS
Contact : leger@lma.cnrs-mrs.fr

Mercredi 28 mars 2018 à 14h00
IEMN Ampli LCI – Villeneuve d’Ascq

Abstract :

Cet exposé va présenter quelques aspects, d’abord introductifs, puis plus récents de la mécanique non régulière. Nombre de situations, conditions au bord ou lois de comportement, fournissent des exemples de non régularité en mécanique. On se concentrera principalement sur le cas du contact et du frottement mais plusieurs aspects fondamentaux seraient identiques dans les cas de la plasticité, de l’endommagement, etc… Dans tous les cas l’introduction de conditions non régulières en mécanique des milieux continus conduit à des problèmes mathématiques ouverts et difficiles. On essaiera pour cela de préciser minutieusement l’état des lieux, en forme de liste des problèmes résolus ou ouverts, afin que soient clarifiées les situations où il est légitime ou non d’utiliser des résultats dans différents domaines de la physique, et l’on observera que ce sont alors des modèles simples qui, pour autant qu’ils soient bien choisis, apportent des informations qualitatives là où des modèles plus proches de la physique seraient inaccessibles.

On rappellera que la non régularité supprime la possibilité de se référer au cadre classique de la théorie des équations différentielles ou aux dérivées partielles. Après quelques résultats, énoncés dans le cas d’un système mécanique très simple mais généralisables à tous les problèmes discrets, une partie importante de l’exposé sera consacrée à l’étude de la réponse à une sollicitation périodique comme cela est classique dans l’étude qualitative des systèmes dynamiques.

Dans un premier temps le système mécanique sera linéaire, ce qui en rendra les résultats utilisables qualitativement dans nombre de domaines de physique, d’acoustique ou de vibrations. Une attention particulière sera portée à la transition entre des zones de comportements différents, et l’on notera qu’aucune transition au chaos n’est observée lorsque la seule non linéarité est due au contact et au frottement. Dans un deuxième temps on ajoutera une non linéarité régulière de type grandes déformations. On verra alors que la réponse peut comprendre des zones de comportement non périodique, ce qui amènera, en conclusion, à interroger le couplage entre différents types de non linéarités.


H.D.R. Contributions à la compréhension du canal de propagation sans-fil MIMO : modèles, applications et perspectives – GAILLOT, DAVY


27 mars à 10h30
Amphithéâtre 1A12 – IUT-A


Ecole doctorale : Sciences Pour l’Ingénieur (SPI)
Laboratoire/Etablissement : IEMN-IRCICA, Université de Lille – FST


Garant de l’habilitation :

  • MME. LIENARD Martine, Professeure de l’Université de Lille – FST

Rapporteurs :

  • M. BENLARBI-DELAI Aziz, Professeur de Sorbonne Université
  • M. EL ZEIN Ghaïs, Professeur de l’INSA Rennes
  • M. VAUZELLE Rodolphe, Professeur de l’Université de Poitiers

Examinateurs :

  • M. CLAVIER Laurent, Professeur de l’Institut Mines TELECOM Lille-Douai
  • M. OESTGES Claude, Professeur de l’Université Catholique de Louvain, Belgique
  • SOUTENANCE : Mardi 27 Mars 2018 à 10h30, IUT-A Amphi 1A12

HDR_2018_Davy Gaillot

Les Mardis de l’Innovation : L’enjeu global du stockage de l’énergie pour l’avenir de l’internet des objets, des énergies alternatives et de la mobilité

Mardi 20 mars 2018

Accueil 18:00 – Conférence 18:30 – 20:30
CNRS, 3 rue Michel-Ange, 75016 Paris

Les technologies de stockage de l’énergie sont au cœur d’un enjeu mondial considérable. L’avenir de beaucoup d’innovations est lié à d’importants progrès dans les capacités de stockage compact et de recharges rapide des batteries (l’automobile et toutes les autres formes de mobilité, jusqu’au smartphone notamment). Les grandes énergies alternatives (éolien et solaire), n’étant pas continue, leur efficacité dans les réseaux futurs est également liée à l’amélioration du stockage de l’électricité. Quant au monde gigantesque des objets connectés qui se prépare, il est très consommateur de batteries miniaturisées à très longue durée de vie sans rechargement. Si aujourd’hui le lithium est le matériau phare, avec de multiples combinaisons, d’autres matériaux et des technologies alternatives comme la pile à combustible progressent rapidement. Voyage au cœur d’une compétition mondiale allant de la recherche avancée sur l’efficacité des batteries et leur recyclage à l’accès aux matériaux et débouchant sur une bataille industrielle mondiale dominée aujourd’hui par l’Asie.


  • François BARSACQ, PDG, EasyLi, concepteur et fabricant de solutions de stockage d’énergie
  • Patrice SIMON, Réseau sur le Stockage Electrochimique de l’Energie, RS2E
  • Christophe LETHIEN, Institut d’électronique, de microélectronique et de nanotechnologie , IEMN, Université de Lille, CNRS
  • Nicolas LECLERE, Responsable Pôle Innovation Motorisations Electrifiées, Groupe PSA

Séminaire : ‘Substrate-Integrated-Waveguide-Based Antenna Systems for 5G and the Internet-of-Things’

mardi 20 mars à 11h00 – Amphithéâtre IEMN – LCI Villeneuve d’Ascq

Dr. Sam Lemey, Ghent University.
Research Disciplines : Electromagnetism and antenna technology  High frequency circuits 

Abstract: The Internet of Things (IoT) and Industry 4.0 will bring a massive change to the way we live and work in the near future. Fueled by the adaption of novel key-enabling technologies, common objects, tools, machinery, and even garments, will be augmented with sensing, processing, and wireless communication/localization capabilities. The pervasive integration of such a smart common objects into the internet will improve our awareness of our surroundings and physical conditions, thereby helping us to make better decisions. However, the far-reaching integration scenarios, the ever-increasing demand for higher data rates and the harsh and hostile IoT/Industry 4.0 environment make antenna design for IoT-applications substantially more challenging.

In this seminar, I will discuss a new class of high-performance low-cost antenna systems for the 5G wireless communication protocol and the Internet of Things.  In particular, the substrate integrated waveguide technology is adopted to implement cavity-backed slot antenna topologies in conventional and unconventional substrate materials. Owing to their extreme antenna-platform isolation, very stable antenna characteristics are obtained in challenging deployment conditions and with active transceiver and energy harvesting electronics directly integrated on the antenna platform. In addition, it will be shown that broadband operation can be obtained by diverse bandwidth enhancement techniques, whereas miniaturization can be obtained by relying on mode symmetries. Their potential will be demonstrated by presenting several broadband designs for smart floors, on-body applications and centimeter-precision localization applications. The seminar will be concluded by discussing the co-design procedure of a passive remote antenna unit for RoF communication and the realization of a compact, wideband and cost-effective mmWave antenna.

Short bio: Sam Lemey [S’14–M’16] (Sam.Lemey@ugent.be) received the M.Sc. degree in electronic engineering from Howest, University College West Flanders, Kortrijk, Belgium, in 2012 and the Ph.D. degree in electrical engineering from Ghent University, Ghent, Belgium, in 2016. He is currently working as a Post-Doctoral researcher at the Electromagnetics Group in the Department of Information Technology (INTEC) at Ghent University. His research focuses on robust antenna systems for wearable applications, energy-harvesting techniques for wireless nodes, active antenna design for the Internet of Things and 5G applications, IR-UWB antenna systems for centimeter-precision localization, novel techniques to implement substrate integrated waveguide structures in innovative materials, and full-wave/circuit co-optimization frameworks to realize active antenna systems.

Séminaire : « Quantitative Scanning Probe Microscopy Techniques for Heat Transfer Management in nanomaterials and nanodevices »

mardi 20 mars à 17h45 – ISEN Lille

Séverine Gomès
CNRS researcher, Micro and Nanoscale Heat Transfer group at the Centre for Energy and Thermal Sciences, Lyon University

Abstract: The control of heat flow is central to all technologies. According to the first law of thermodynamics, heat is the universal consequence of physical activity. At the same time modern material science and technology is increasingly devoted to the control of matter on the nanoscale and miniaturization of device elements well below 100 nm. By nano-structuring materials their physical properties may be engineered to achieve optimal performance. Examples include materials used in renewable energy generation (thermoelectric, photovoltaics) and structural composites. Thermal control is the dominant problem in many of these fields. For example, the continuous linear scaling of clock frequency in silicon device technology has been suspended for the last ten years as a direct consequence of the decreasing element size and increasing power density in VLSI systems. This is the first aspect of Moore’s law to fail and it has failed directly because of thermal management problems at the nanoscale.

The flow of heat at the nanoscale is completely different from that experienced in macroscopic systems. The dominant phonon wavelengths at room temperature are of order a nanometer with ballistic mean-free path extending from tens of nanometers (in copper) to hundreds of nanometers in Si. Accordingly, at the nanoscale heat flow in solids ceases to be entirely diffusive and may, indeed, be quantized. Convection is suppressed. Radiative transport, where significant, takes place in the near field, since the wavelength of thermal photons is approximately 10 µm at room temperature. Accordingly, the normal methods of modelling and design used for macroscopic thermal work are completely inappropriate.

Effective tools for thermal measurement at the nanoscale are limited. The highest spatial resolution systems which are used for quantitative thermal measurement are based on optical effects, such as IR thermal emission, Raman spectroscopy or photo-reflectance. The spatial resolution of all of these methods is limited to 500 nm or greater. The key technique for thermal measurement at the nanoscale is Scanning Thermal Microscopy (SThM), but this remains highly non-quantitative in normal use. The need is for a complete thermal measurement and modelling technology for use at the nanoscale.

In this talk I will outline our efforts in better understanding the heat transfer and measuring thermal properties at the micro and nanoscales. I will give my feedback after four years as scientific coordinator of a European large scale- NMP Project QUANTIHEAT that was centered around the SThM technique to solve the problem of thermal metrology at the nano-scale and delivering validated standards, methods and modelling tools for nano-thermal design and measurement and gathered 21 strategic partners in Europe.

Short bio:
Dr Séverine Gomès received her European PhD in Physics at the University of Reims, France in 1999.
She is a permanent CNRS researcher, head of the Micro and Nanoscale Heat Transfer group at the Centre for Energy and Thermal Sciences (CETHIL), a common center of the National Institute of Applied Sciences in Lyon, CNRS and the University Claude-Bernard of Lyon.
She was recruited in 2001 by CNRS in the area of Scanning Thermal Microscopy (SThM), a scanning probe microscopy method with which she worked during her PhD in collaboration with the the group of Hubert Pollock and Azzedine Hammiche at Lancaster University (ULANC, UK). She was awarded the CNRS Bronze Medal in 2005 for her pioneering works on SThM.
Her main research interests deal with the development and the application of SThM and electrical methods with the goals of studying heat generation and transport at micro and nanoscales and measuring thermal properties of nanostructured materials and local temperature. During 8 years (2007-2014) she was co-responsible along with Prof. O. Kolosov (ULANC), for the ‘Local Probes’ group in the ‘Advanced Metrology’ axis of the CNRS-sponsored European Research Network: ‘Thermal NanoSciences and NanoEngineering’. From dec. 2013 to nov. 2017, she was the scientific coordinator of the European large scale- NMP Project QUANTIHEAT.

Contact :
Séverine Gomes – CETHIL UMR 5008
Mail : Severine.gomes@insa-lyon.fr
Phone : 04 72 43 64 28


A l’IEMN , en salle du conseil le Jeudi 8 Mars 2017 à partir de 9h15
UMI 3288 CINTRA, CNRS – NTU Singapore – Thales : Research activities and recent achievements
P. Coquet, Univ. of Lille – Director of CINTRA, B.K. Tay, NTU Singapore – Deputy Director, Q. Dinh, Thales Singapore – Deputy Director, D. Birowosuto.
CINTRA UMI 3288 is a joint laboratory between CNRS, Nanyang Technological University and Thales Group. It is located in Singapore and is developing research activities on Nano-electronics and Nano-photonics technologies. http://cintra.ntu.edu.sg/Pages/default.aspx
IEMN is one of the historical partners of CINTRA and there are several on-going projects between IEMN and CINTRA. The objective of the presentation will be to give an overview of the recent activities developed in CINTRA with the perspective of initiating new joint projects.

The 3 research thrusts of CINTRA will be detailed.
  • Carbon based Materials and Devices: Carbon nanotubes, graphene, BN, foam like materials, with applications in RF, 3D integration, thermal management, energy storage 
  • New Nano-materials and Structures: 2D TMD, nanowires, defect induce emitters, with applications in nano light sources, quantum sensing, gas sensing, radiation detection, energy harvesting
  • Nano-photonics Technologies: nanostructured optical fibers, III-V