IEMN
  • Home
  • News
    • IEMN Newsletters
    • M2-Ingé Internships
    • Job offers
    • All news
  • The Institute
    • Presentation
    • Organization of the institute
    • The Scientific Department
    • The Technological Department
    • Administrative and financial management
    • Rules of procedure
    • Our commitments
  • The Research
    • Scientific departments
      • Nanostructured Materials and Components
      • Micro / nano optoelectronics
      • Telecommunications Technologies and Intelligent Systems
      • Acoustic
    • Research groups
    • Flagship
  • Scientific Production
    • IEMN publications
    • Scientific production resources
  • The platforms
    • CMNF - Central Platform for Micro Nano Manufacturing
      • Engraving and implantation pole
      • In Line Analysis Unit
      • Soft Lithography and Bio Microfluidics
      • Deposits and epitaxy division
      • Lithography Unit
      • Packaging Division
      • CMNF Staff
    • PCMP - Multi-Physics Characterization Platform
      • Scanning Probe Microscopy Facility
      • Hyperfrequency, Optical and Photonic Characterization (CHOP)
      • Advanced Communications Systems and Prototyping cluster (SigmaCOM)
      • Characterisation, ElectroMagnetic Compatibility and Prototyping Centre (C2EM)
      • PCMP Staff
    • Services offered by our platforms
  • Partnership - Valuation
    • Academic Collaborations
    • ANR Projects
    • Main international collaborations
    • Industrial partnerships
    • The joint IEMN-Industry laboratories
    • Startups
  • Research Training
    • After the thesis
      • Do a post-doc at the IEMN
      • Towards the world of business and industry
      • Become a teacher-researcher
      • Become a Researcher
      • Starting a business at IEMN
      • FOCUS on a SATT engineer from the IEMN
    • A thesis at IEMN
      • Thesis and HDR defenses
      • Thesis topics
      • Financing
      • Doctoral studies
    • Master - Engineer
      • Masters ULille
        • Master Life Sciences and Technologies graduate programme
        • Master Nanosciences and Nanotechnologies - Speciality ETECH
        • Master Networks and Telecommunications
      • UPHF-INSA Masters
        • Master in Embedded Systems and Mobile Communications Engineering
        • Master Cyber Defense and Information Security
        • Master in Materials, Control and Safety
        • Master in Image and Sound Systems Engineering
      • Partner/Tutoring Engineering Schools
      • M2-Ingé Internships
    • The Lille branch of the GIP-CNFM
    • Nano-École Lille
  • Contact Us
    • Location
    • Contact form
    • Annuaire Intranet
    • « Suivez-nous »
  • Our support
  • fr_FR
  • Rechercher
  • Menu Menu
NEWS

Séminaire : Low Power High Speed Nonlinear Signal Processing:From Iterative Algorithm to Analog Electronic Circuits

05/12/2019
14h00 – IRCICA, 50 Avenue Halley, 59650 Villeneuve-d’Ascq

Pr. Werner G. TEICH
Institute of Communications Engineering, Ulm University, Germany

Despite the tremendous progress made in digital signal processing during the last decades, the constraints imposed by high data rate wireless communications are becoming ever more stringent. The development of the wireless internet of things with a massive machine-to-machine communications raised the importance of power consumption for sophisticated algorithms, such as channel equalization or decoding. The strong link existing between computational speed and power consumption suggests an investigation of signal processing with energy efficiency as a prominent design choice. Therefore we revisit the topic of signal processing with analog circuits and its potential to increase the energy efficiency. Channel equalization is chosen as one application of nonlinear signal processing, and a vector equalizer based on a recurrent neural network (RNN) structure is taken as an example to demonstrate the potential of state of the art in very large scale integration (VLSI) design. We show for this example that it is possible to achieve an energy requirement of few pJ/bit, an improvement of three to four orders of magnitude compared with the most energy efficient digital circuits. As a second example, we consider iterative decoding algorithm based on message passing. They can be represented by a generalized RNN structure. Again, this allows to derive an equivalent analog circuit. Compared to digital circuits, analog circuits allow to perform iterative decoding or equalization with increased computational speed, reduced chip area and power consumption.

Werner G. TEICH graduated with a M.Sc. in Physics from Oregon State University, Corvallis, Oregon, in 1984. He received the Dipl.-Phys. and the Dr. rer. nat. degree in Physics from the University of Stuttgart in 1985 and 1989, respectively. In 1991 he joined the Department of Information Technology, Ulm University, Germany. Currently, he is Senior Lecturer in Digital Communications at the Institute of Communications Engineering, Ulm University. His research interests are in the general field of digital communications. Specific areas of interest include design and analysis of iterative methods in general, and the application of artificial neural networks for low power nonlinear signal processing with analog electronic circuits in particular.

Contact : Laurent CLAVIER

Logo
Cité Scientifique
Avenue Henri Poincaré
CS 60069
59 652 Villeneuve d'Ascq Cedex, France
Tel : 03 20 19 79 79
CNRS Logo University of Lille Logo University Polytech Logo Junia Logo Centrale Lille Logo Renatech Logo RFnet Logo
Site map
Copyright Service ECM et pôle SISR 2024
  • Scientific production
  • Legal information
  • Privacy policy
Faire défiler vers le haut
fr_FR
fr_FR
en_GB
We use cookies to ensure you have the best experience on our website. If you continue to use this site, we will assume that you are happy with it.OKNoPrivacy policy