IEMN
  • Home
  • News
    • IEMN Newsletters
    • M2-Ingé Internships
    • Job offers
    • All news
  • The Institute
    • Presentation
    • Organization of the institute
    • The Scientific Department
    • The Technological Department
    • Administrative and financial management
    • Rules of procedure
    • Our commitments
  • The Research
    • Scientific departments
      • Nanostructured Materials and Components
      • Micro / nano optoelectronics
      • Telecommunications Technologies and Intelligent Systems
      • Acoustic
    • Research groups
    • Flagship
  • Scientific Production
    • IEMN publications
    • Scientific production resources
  • The platforms
    • CMNF - Central Platform for Micro Nano Manufacturing
      • Engraving and implantation pole
      • In Line Analysis Unit
      • Soft Lithography and Bio Microfluidics
      • Deposits and epitaxy division
      • Lithography Unit
      • Packaging Division
      • CMNF Staff
    • PCMP - Multi-Physics Characterization Platform
      • Scanning Probe Microscopy Facility
      • Hyperfrequency, Optical and Photonic Characterization (CHOP)
      • Advanced Communications Systems and Prototyping cluster (SigmaCOM)
      • Characterisation, ElectroMagnetic Compatibility and Prototyping Centre (C2EM)
      • PCMP Staff
    • Services offered by our platforms
  • Partnership - Valuation
    • Academic Collaborations
    • ANR Projects
    • Main international collaborations
    • Industrial partnerships
    • The joint IEMN-Industry laboratories
    • Startups
  • Research Training
    • After the thesis
      • Do a post-doc at the IEMN
      • Towards the world of business and industry
      • Become a teacher-researcher
      • Become a Researcher
      • Starting a business at IEMN
      • FOCUS on a SATT engineer from the IEMN
    • A thesis at IEMN
      • Thesis and HDR defenses
      • Thesis topics
      • Financing
      • Doctoral studies
    • Master - Engineer
      • Masters ULille
        • Master Life Sciences and Technologies graduate programme
        • Master Nanosciences and Nanotechnologies - Speciality ETECH
        • Master Networks and Telecommunications
      • UPHF-INSA Masters
        • Master in Embedded Systems and Mobile Communications Engineering
        • Master Cyber Defense and Information Security
        • Master in Materials, Control and Safety
        • Master in Image and Sound Systems Engineering
      • Partner/Tutoring Engineering Schools
      • M2-Ingé Internships
    • The Lille branch of the GIP-CNFM
    • Nano-École Lille
  • Contact Us
    • Location
    • Contact form
    • Annuaire Intranet
  • Our support
  • fr_FR
  • Rechercher
  • Menu Menu
NEWS

THESIS: Graphene FET-based aptamer sensor and plasmon optics

Patrik ASPERMAIR

Tuesday 17 December 2019 at 10.00 am
Muthgasse 11, 2nd floor A-1190 Vienna - room A-OG02-O03

Jury :
  • Sabine SZUNERITS, PREX, University of Lille (Supervisor)
  • Vincent BOUCHIAT, Research Director, Institute Néel (Rapporteur)
  • José Luis TOCA-HERRERA, Research Director, Institute of Biophysics (Rapporteur)
  • Wolfgang KNOLL, Professor, Austrian Institute of Technology (supervisor)
Summary:

The choice between optical detection principles and electrical concepts for biomedical diagnostics has not yet been decided. Both approaches continue to offer solutions for rapid, multiplexed, simple and inexpensive detection of relevant biological molecules. However, if small analytes are to be detected and/or if the analyte binding density at the transducer surface is low, label-free optical detection is problematic. In this work, an innovative and versatile detection platform was developed, combining an electrical and optical readout device to compare signals during real-time biological recognition. It is based on coupling the reading of a graphene-based field effect transistor (gFET) with that of surface plasmon resonance (SPR). Various types of link, including biotin/neutravidin, PNA/DNA and ssRNA/ssDNA aptamer for protein detection, were studied and the results discussed.

Abstract:

The race in biomedical diagnostics between optical detection principles and electrical concepts is not decided yet. Both approaches continue to offer solutions for fast, multiplexed, simple and cheap detection of biological relevant molecules. However, if it comes to the detection of small analytes and/or if the achievable analyte binding density at the transducer surface is low, label-free optical detection schemes have a problem because the change in the optical interfacial architecture induced by the mere binding of the analyte may be simply too minute to be detected. In this work, an innovative and versatile sensing platform, combining an electrical and optical read-out device to compare the different signal behaviours during a biological binding event in real time was developed. It is based in coupling the read out of a graphene-based field-effect transistor (gFET) with that of surface plasmon resonance (SPR). Various binding events including biotin/neutravidin, PNA/DNA and ssRNA/ssDNA aptamers for protein detection were investigated and the results discussed.

Logo
Cité Scientifique
Avenue Henri Poincaré
CS 60069
59 652 Villeneuve d'Ascq Cedex, France
Tel : 03 20 19 79 79
CNRS Logo University of Lille Logo University Polytech Logo Junia Logo Centrale Lille Logo Renatech Logo RFnet Logo
Site map
Copyright Service ECM et pôle SISR 2024
  • Scientific production
  • Legal information
  • Privacy policy
Faire défiler vers le haut
fr_FR
fr_FR
en_GB
We use cookies to ensure you have the best experience on our website. If you continue to use this site, we will assume that you are happy with it.OKNoPrivacy policy