IEMN
  • Home
  • News
    • IEMN Newsletters
    • M2-Ingé Internships
    • Job offers
    • All news
  • The Institute
    • Presentation
    • Organization of the institute
    • The Scientific Department
    • The Technological Department
    • Administrative and financial management
    • Rules of procedure
    • Our commitments
  • The Research
    • Scientific departments
      • Nanostructured Materials and Components
      • Micro / nano optoelectronics
      • Telecommunications Technologies and Intelligent Systems
      • Acoustic
    • Research groups
    • Flagship
  • Scientific Production
    • IEMN publications
    • Scientific production resources
  • The platforms
    • CMNF - Central Platform for Micro Nano Manufacturing
      • Engraving and implantation pole
      • In Line Analysis Unit
      • Soft Lithography and Bio Microfluidics
      • Deposits and epitaxy division
      • Lithography Unit
      • Packaging Division
      • CMNF Staff
    • PCMP - Multi-Physics Characterization Platform
      • Scanning Probe Microscopy Facility
      • Hyperfrequency, Optical and Photonic Characterization (CHOP)
      • Advanced Communications Systems and Prototyping cluster (SigmaCOM)
      • Characterisation, ElectroMagnetic Compatibility and Prototyping Centre (C2EM)
      • PCMP Staff
    • Services offered by our platforms
  • Partnership - Valuation
    • Academic Collaborations
    • ANR Projects
    • Main international collaborations
    • Industrial partnerships
    • The joint IEMN-Industry laboratories
    • Startups
  • Research Training
    • After the thesis
      • Do a post-doc at the IEMN
      • Towards the world of business and industry
      • Become a teacher-researcher
      • Become a Researcher
      • Starting a business at IEMN
      • FOCUS on a SATT engineer from the IEMN
    • A thesis at IEMN
      • Thesis and HDR defenses
      • Thesis topics
      • Financing
      • Doctoral studies
    • Master - Engineer
      • Masters ULille
        • Master Life Sciences and Technologies graduate programme
        • Master Nanosciences and Nanotechnologies - Speciality ETECH
        • Master Networks and Telecommunications
      • UPHF-INSA Masters
        • Master in Embedded Systems and Mobile Communications Engineering
        • Master Cyber Defense and Information Security
        • Master in Materials, Control and Safety
        • Master in Image and Sound Systems Engineering
      • Partner/Tutoring Engineering Schools
      • M2-Ingé Internships
    • The Lille branch of the GIP-CNFM
    • Nano-École Lille
  • Contact Us
    • Location
    • Contact form
    • Staff directory
  • Our support
  • fr_FR
  • Rechercher
  • Menu Menu
NEWS

THESE YANG Z.H « Développement d‘outils de précision basés sur l’apprentissage profond pour l‘analyse des parasites Malaria et Cryptosporidium à partir d’images microscopiques « 

Z.H  YANG

Soutenance : 5 décembre 2022
Thèse de doctorat en Electronique, microélectronique, nanoélectronique et micro-ondes, Université de Lille, ENGSYS Sciences de l’ingénierie et des systèmes,

Summary:

Dans cette thèse, nous avons proposé deux contributions principales liées à l’analyse par apprentissage profond des parasites Malaria et Cryptosporidium à partir d’images microscopiques. Plus spécifiquement, dans la première contribution, nous avons proposé un framework pour diagnostiquer une infection par le parasite Malaria chez les humains en utilisant des images microscopiques de frottis sanguins fins. Comparé aux méthodes de l’état de l’art, notre framework est basé sur des approches de segmentation et de classification permettant l’analyse directe du parasite au lieu de la cellule qui le contient. Dans ce sens, le framework permet de segmenter directement le parasite Malaria et de distinguer son espèce parmi quatre classes principales : P. Falciparum, P. Ovale, P. Malaria et P. Vivax. Nous démontrons l’efficacité de notre framework et notamment son potentiel de généralisation sur des données interclasses en exploitant plusieurs jeux de données publiques. De plus, nous montrons que la technique d’augmentation des données que nous proposons, appelée Local Parasite Texture Scanning (LPTS), améliore davantage la précision de notre modèle de classification. Dans la deuxième contribution, nous avons proposé un framework pour diagnostiquer une infection par le parasite Cryptosporidium chez les vaches laitières en utilisant des images microscopiques de fluorescence. À cette fin, nous avons proposé une méthodologie originale de segmentation des parasites basée sur une approche grossière à fine, qui atteint une grande précision sur notre jeu de données généré de Cryptosporidium et qui permet de dépasser en termes de performance les méthodes de segmentation de l’état de l’art. Nous avons également proposé un modèle de classification à haut pouvoir discriminant permettant d’identifier efficacement le stade de vie des parasites parmi 4 stades asexués : oocyste, trophozoïte, méronte, et forme libre. Nous montrons à travers une étude expérimentale que notre modèle atteint une grande précision en analysant uniquement le parasite lui-même et sans avoir besoin d’informations supplémentaires liées à la taille et au nombre de noyaux qui sont nécessaires au biologiste afin de réaliser sa classification.

Abstract:

In this thesis, we proposed two main contributions related to deep learning analysis of Malaria and Cryptosporidium parasites from microscopic images. More specifically, in the first contribution, we proposed a framework for diagnosing Malaria parasite infection in humans using microscopic images of thin blood smears. Compared to the state of the art methods, our framework is based on segmentation and classification approaches allowing the direct analysis of the parasite instead of the cell that contains it. In this sense, the framework allows to directly segment the Malaria parasite and to distinguish its species among four main classes: P. Falciparum, P. Ovale, P. Malaria and P. Vivax. We demonstrate the efficiency of our framework and in particular its potential for generalization on inter-class data by exploiting several public datasets. Moreover, we show that our proposed data augmentation technique, called Local Parasite Texture Scanning (LPTS), further improves the accuracy of our classification model. In the second contribution, we proposed a framework to diagnose Cryptosporidium parasite infection in dairy cows using fluorescence microscopy images. To this end, we proposed an original parasite segmentation methodology based on a coarse to fine approach, which achieves high accuracy on our generated Cryptosporidium dataset and outperforms state-of-the-art segmentation methods. We have also proposed a classification model with high discriminating power to efficiently identify the life stage of parasites among 4 asexual stages: oocyst, trophozoite, meront, and free form. We show through an experimental study that our model achieves a high accuracy by analyzing only the parasite itself and without the need for additional information related to the size and number of nuclei that are necessary for the biologist to perform its classification.

NEWS
Logo
Cité Scientifique
Avenue Henri Poincaré
CS 60069
59 652 Villeneuve d'Ascq Cedex, France
CNRS Logo University of Lille Logo University Polytech Logo Junia Logo Centrale Lille Logo Renatech Logo RFnet Logo
Site map
Copyright Service ECM et pôle SISR 2024
  • Scientific production
  • Legal information
  • Privacy policy
Faire défiler vers le haut
fr_FR
fr_FR
en_GB
We use cookies to ensure you have the best experience on our website. If you continue to use this site, we will assume that you are happy with it.OKNoPrivacy policy