Q. REZARDN
Soutenance : 20 mai 2022
Thèse de doctorat en Electronique, microélectronique, nanoélectronique et micro-ondes, Université de Lille, ENGSYS Sciences de l’ingénierie et des systèmes,
Summary:
Une tumeur libère divers marqueurs dans son environnement. Parmi eux, les cellules tumorales circulantes (CTC) se propagent dans les vaisseaux sanguins créant ensuite des métastases. Les avantages de la biopsie liquide ont mis en avant la détection des CTCs comme un potentiel outil de diagnostic. Cependant, leur he?te?roge?ne?ite? et leur faible concentration ne?cessitent la capacite? d’analyser inde?pendamment chaque cellule d’un e?chantillon avec une me?thode fiable et a? haut de?bit. Pour pouvoir e?tre exploite?e dans un contexte me?dical, cette me?thode doit e?tre a? la fois pratique dans sa mise en place et fiable en termes de gestion des donne?es. La seule me?thode approuve?e cible les marqueurs de surface des cellules. Cependant, certaines cellules cance?reuses perdent ces marqueurs lors de leur transition e?pithe?liale /me?senchymateuse. Des me?thodes innovantes ciblant de nouveaux biomarqueurs sont donc indispensables. Les marqueurs biophysiques apparaissent pertinents car directement relie?s a? l’e?volution des CTCs lors de leur migration. La microfluidique a permis l’introduction d’approches originales d’analyse a? haut de?bit. Cependant, un compromis existe entre le temps ne?cessaire a? l’analyse d’une cellule et la richesse des informations obtenues. La combinaison des caracte?risations e?lectriques et me?caniques parai?t e?tre la meilleure approche afin d’atteindre un rendement de mesure pertinent et exploitable. La cytome?trie d’impe?dance nous est apparue comme une technologie de base tre?s pertinente afin d’y associer la caracte?risation me?canique. Cependant, les me?thodes de caracte?risations me?caniques les plus utilise?es en microfluidique, telle que la cytome?trie de de?formabilite?, pre?sente de fortes limitations expe?rimentales soit lie?es a? l’obstruction de canaux ou au besoin de traitement massif de donne?es d’image associe?e au tre?s haut de?bit. Dans ce contexte, ce travail vise une me?thode fiable, pratique et a? haut de?bit afin de caracte?riser les ligne?es cance?reuses en fonction de leur signature biophysique. Un dispositif combinant MEMS et microfluidique est proposé ou? des paires d’e?lectrodes en silicium inte?gre?es dans les parois du canal effectuent la cytome?trie d’impe?dance tandis que les caracte?ristiques me?caniques sont obtenues par la mesure de la compression physique des cellules dans un entrefer e?troit pourvu d’un capteur de de?placement.
Abstract:
TA tumor releases various markers into its environment. Among them, circulating tumor cells (CTCs) spread in blood vessels and metastasize. The advantages of liquid biopsy have highlighted the detection of CTCs as a potential diagnostic tool. However, their heterogeneity and low concentration require the ability to analyze each cell in a sample independently with a reliable and high throughput method. To be used in a medical context, this method must be both practical in its implementation and reliable in terms of data management. The only approved method targets cell surface markers. However, some cancer cells lose these markers during their epithelial/mesenchymal transition. Innovative methods targeting new biomarkers are therefore essential. Biophysical markers appear relevant because they are directly related to the evolution of CTCs during their migration. Microfluidics has allowed the introduction of original high throughput analysis approaches. However, there is a trade-off between the time needed to analyze a cell and the richness of the information obtained. The combination of electrical and mechanical characterizations seems to be the best approach to reach a relevant and exploitable measurement yield. Imaging cytometry appeared to be a very relevant basic technology to combine with mechanical characterization. However, the most commonly used methods of mechanical characterization in microfluidics, such as deformability cytometry, present strong experimental limitations either related to channel obstruction or to the need for massive image data processing associated with very high throughput. In this context, this work aims at a reliable, practical and high-definition method to characterize the faulty lines according to their biophysical signature. A device combining MEMS and microfluidics is proposed where pairs of silicon electrodes integrated in the walls of the channel perform the imaging cytometry while the mechanical characteristics are obtained by measuring the physical compression of the cells in a narrow air gap equipped with a deposition sensor.