Journées SCOPe


22 et 23 juin – IEMN – Amphithéâtre LCI – Villeneuve d’Ascq

L’objectif de ces journées est de réunir au niveau national les acteurs français et francophones impliqués dans la recherche sur le silicium et les semi-conducteurs/oxydes poreux et leurs applications.

Cette 4ème édition des journées SCOPe sera l’occasion pour notre communauté de partager nos dernières avancées dans le domaine et de promouvoir la jeune génération.

Les doctorants et post-doctorants seront prioritaires pour les présentations orales.

Thèmatiques abordées :

  • Elaboration, techniques de fabrication, structures
  • Luminescence et photonique
  • Microélectronique
  • Systèmes et intégration
  • Coatings fonctionnels
  • Capteurs
  • Photovoltaïque
  • Matériaux d’électrodes, énergie, conversion, stockage
  • Imagerie médicale, thérapie

PRESENTATION


Un intérêt nouveau pour les semi-conducteurs poreux a émergé dans la communauté scientifique dans les années 90, notamment grâce à la découverte de la photoluminescence du Si poreux. Les procédés électrochimiques sont devenus des méthodes phares de nano-structuration de la plupart des semi-conducteurs (Si, GaAs, InP, etc…) et ont permis la génération de réseaux poreux auto-ordonnés (Al2O3, TiO2, etc…). Ils ont dès lors été largement étudiés car ils ont ouvert des perspectives pour la fabrication de nano-objets à propriétés nouvelles, en particulier électroniques et optiques. Par la suite, les domaines d’applications potentielles de ces structures anodiques poreuses, n’ont cessé de croître et d’évoluer.  En particulier, le Si poreux dotés de fonctionnalités variées a révélé un potentiel considérable pour des applications en opto- et microélectronique, systèmes, capteurs, matériaux pour l’énergie, ainsi que pour la nanomédecine.

Aujourd’hui, le silicium et les semi-conducteurs poreux sont au cœur des intérêts scientifiques de nombreuses équipes de recherche dans le monde entier, attirant l’attention de chimistes, de physiciens, de biologistes et de médecins.

COMITE SCIENTIFIQUE


  • BASTIDE Stéphane – ICMPE-CMTR – Université Paris-Est
  • BILLOUÉ Jérôme – GREMAN – Université de Tours
  • COFFINIER Yannick – IEMN – Université de Lille 1
  • CUNIN Frédérique – Institut Charles Gerhardt Montpellier – Université de Montpellier
  • DJENIZIAN Thierry – MADIREL – Aix Marseille Université
  • GAUTIER Gaël – GREMAN – Université de Tours
  • SANTINACCI Lionel – CiNaM – Aix Marseille Université

COMITE D’ORGANISATION


  • COFFINIER Yannick – IEMN – Université de Lille 1HOSU
  • Ioana Silvia  – IEMN – Université de LilleHAMDI
  • Abderrahmane  – IEMN – Université de Lille
  • BILLOUÉ Jérôme – GREMAN – Université de Tours
  • CUNIN Frédérique – Institut Charles Gerhardt Montpellier – Université de Montpellier
  • GAUTIER Gaël – GREMAN – Université de Tours

Pour plus de renseignement : yannick.coffinier@univ-lille1.fr
ou sur le site :scope2017.sciencesconf.org

IEMN : Romain Peretti reçoit une chaire d’excellence internationale

La Région Hauts-de-France et le Fond Européen de Développement Régional ont attribués une chaire d’excellence internationale à Romain Peretti, chercheur à l’IEMN, pour son projet  » TeraHertz Optical Traping of Viruses  » (THOTroV). Grâce à cette chaire, Romain Peretti a pour ambition de développer une technique de piégeage optique dans une nouvelle plage de longueur d’onde : le TeraHertz, afin de l’appliquer à des objets aussi petits que des virus.

A magnetoelectric random access memory cell based on the stress-mediated magnetoelectric effect that promises extremely low bit-reading and low bit-writing energies.

From the Journal: Applied Physics Letters By AIP News Staff

WASHINGTON, D.C., May 30, 2017 — Today’s computers provide storage of tremendous quantities of information with extremely large data densities, but writing and retrieving this information expends a lot of energy. More than 99 percent of the consumed power of information storage and processing is wasted in the form of heat, a big headache that still has not abated.

A team of researchers from France and Russia has now developed a magnetoelectric random access memory (MELRAM) cell that has the potential to increase power efficiency, and thereby decrease heat waste, by orders of magnitude for read operations at room temperature. The research could aid production of devices such as instant-on laptops, close-to-zero-consumption flash drives, and data storage centers that require much less air conditioning. The research team reported their findings this week in Applied Physics Letters, by AIP Publishing.

Billions of transistors can now be etched onto single chips in a space the size of a dime, but at some point, increasing this number for even better performance using the same space will not be possible. The sheer density of these nanoscopic transistors translates into more unwanted heat along with quantum-level interactions that must now be addressed.

Over the last several years, research has ramped up to explore the magnetic properties of electrons in a phenomenon called the magnetoelectric effect. This effect, often of interest in the field of research known as spintronics, takes advantage of an electron’s spin, instead of its charge. Spins can potentially be manipulated at smaller size scales using far less energy.

Most efforts have focused on reducing the energy of the write operations in magnetic memories, since these operations typically use more energy than read operations. In 2010, the same French and Russian team showed that a combination of magnetoelastic and piezoelectric materials in a magnetoelectric memory cell could allow a 100-fold reduction of the energy needed for the writing process. In the researchers’ latest paper, they show that the same magnetoelectric principle also can be used for read operations with extra-low energy consumption.

“We focused on read operations in this paper because the potential for the writing energy to be very low in magnetoelectric systems means that the energy output will now be higher for read operations,” said Nicolas Tiercelin, co-author of the paper and a research scientist from the Centre national de la recherche scientifique (CNRS) who is conducting research at the Institute of Electronics, Microelectronics and Nanotechnology in Lille, France.

The core of the researchers’ MELRAM memory cell is based on combining the properties of two types of materials by coupling them mechanically. Magnetic alloys — one based on a combination of terbium-cobalt and the other based on iron and cobalt — with thicknesses of a few nanometers are stacked on top of one another. The alloys form a magnetoelastic nanocomposite material whose magnetic spins react to mechanical stress.

These alloys are then placed on a piezoelectric substrate, which consists of relaxor ferroelectrics, exotic materials that change their shape or dimensions when they are exposed to an electric field.

“Together, these materials constitute multiferroic heterostructures in which the control of the magnetic properties is made possible by the application of an electric voltage,” Tiercelin said.

“The nanocomposite multilayer provides strong magnetoelectric interaction at room temperature,” said Vladimir Preobrazhensky, another co-author of the paper and research director at the Wave Research Center, Prokhorov General Physics Institute of the Russian Academy of Sciences in Moscow. “This interaction is the basic mechanism for control of magnetic states by the electric field. This feature of the magnetoelectric memory is the origin of its extra-low power consumption.”

This research was carried out within the scope of the International Associated Laboratory on Critical & Supercritical phenomena in Functional Electronics, Acoustics & Fluidics – LIA LICS.

_______________________________________________________________

Article title:
Appl. Phys. Lett. 110, 222401 (2017); http://doi.org/10.1063/1.4983717

Alexey Klimov,1,2,3 – Nicolas Tiercelin,2 – Yannick Dusch,2 – Stefano Giordano,2  – Theo Mathurin,2 – Philippe Pernod,2 – Vladimir Preobrazhensky,2,4 – Anton Churbanov,1,5 – Sergei Nikitov,1,5

ABSTRACT

MELRAM cell and the electric scheme for the magnetic state identification

Magnetic memory cells associated with the stress-mediated magnetoelectric effect promise extremely low bit-writing energies. Most investigations have focused on the process of writing information in memory cells, and very few on readout schemes. The usual assumption is that the readout will be achieved using magnetoresistive structures such as Giant Magneto-Resistive stacks or Magnetic Tunnel Junctions. Since the writing energy is very low in the magnetoelectric systems, the readout energy using magnetoresistive approaches becomes non negligible. Incidentally, the magneto-electric interaction itself contains the potentiality of the readout of the information encoded in the magnetic subsystem. In this letter, the principle of magnetoelectric readout of the information by an electric field in a composite multiferroic heterostructure is considered theoretically and demonstrated experimentally using [N×(TbCo2/FeCo)]/[Pb(Mg1/3Nb2/3)O3](1x)[PbTiO3]x stress-mediated ME heterostructures.

Séminaire MNMB : Analyse biomécanique et fluidique des anévrismes aortiques – Francesca Condemi

Francesca Condemi, chercheuse post-doctorante à l’École Nationale Supérieure des Mines de Saint-Étienne, viendra nous présenter ses travaux sur l’analyse biomécanique et fluidique des anévrismes aortiques.

Date : Vendredi 5 mai 2017 – 13h30
Lieu : Amphithéâtre – IEMN-LCI

Francesca Condemi: École Nationale Supérieure des Mines de Saint-Étienne

Abstract:

Ascending thoracic aorta aneurysm (ATAA) is known to be the 19th common cause of human death. Although prophylactic surgery is the only treatment suitable, the risk of mortality associated to elective surgical repair is up to 5%. In clinical practice, maximum diameter is the standardly used risk of rupture indicator with a critical diameter threshold of 5.5 cm. However, for aneurysms with a diameter smaller than 5.5 cm, negative outcomes (rupture, dissection and death) before surgical repair are of 5-10%.

Biomechanical studies showed that ATAA results in disturbed aortic hemodynamics and mechanical weakening of the aortic wall. However, there is still a lack of insight on how the disturbed hemodynamics and the mechanical weakening may be related.

In this talk the speaker will give a brief introduction on the methodology developed at the EMSE to analyze the fluid- and biomechanical behaviors of the ascending thoracic aorta aneurysm with concomitant aortic insufficiency (AI). This methodology combines 4D flow MRI, CFD models and the mechanical bulge inflation test to determine possible correlation between the aortic flow pattern/WSS distribution and the ATAAs wall strength in patients affected by ATAA and AI.

Biography:

Dr. Francesca Condemi obtained her PhD in Biomedical and Computer Science Engineering from the University Magna Graecia of Catanzaro (UMG), Italy in 2015. During her PhD, she was a visiting scholar at University of Kentucky (UKY), Lexington, Kentucky, USA from 2013 to 2015. She remained at UKY until March 2016 as a Postdoctoral Fellow. Currently she is a Postdoctoral Fellow at École Nationale Supérieure des Mines of Saint-Étienne (EMSE), France, in the Computational Fluid Dynamics (CFD) Branch. Her research interests revolve around the development of numerical models for the design of cardiovascular assist devices and for the analysis of the human cardiovascular system. Currently she is working on the development of a comprehensive and original model for the biomechanical analysis of the ascending thoracic aorta affected by aneurysm and concomitant aortic insufficiency (AI).

 

Séminaire : Terahertz sources based on quantum cascade heterostructures – Juraj Darmo

In the framework of MNO department, IEMN is pleased to announce the seminar of Dr. Juraj Darmo

Date : thursday 4 mai at 15h00
Location : Salle du Conseil – IEMN-LCI

Pr. Juraj Darmo : Photonics Institute, Vienna University of Technology Gusshausstr. 27-29, 1040 Vienna (Austria)

The state-of-the-art of terahertz (THz) sources based on quantum cascade heterostructures will be reviewed from the viewpoint of short pulse generation. There are two principal applications of the concept of quantum cascade – for the emission and for the detection of terahertz waves. On the emitter’s side, THz quantum cascade lasers (QCLs) are increasingly exploited for sensing and imaging applications. Today QCLs span a frequency range from 1.8THz to 5 THz with record peak output powers of 1 W and CW single-mode average powers in the 100s mW range. Recently, a concept of heterogeneous QCL active region has been successfully implemented leading to broadband emission over one octave and even to frequency comb operation with a 600 GHz bandwidth. Such active medium can be used for the generation of short (bandwidth limited) pulses.

In this work we have exploited broadband QCLs active regions to demonstrate an alternative route to boost the performance of time-domain spectroscopy (TDS), the main spectroscopic technique used in the THz frequency range. The available broad THz QCL gain is used to amplify a weak broadband THz spectrum generated through optical-to-THz low-efficiency conversion. In the 2.0-3.0 THz window this approach leads to an increase of SNR by two orders of magnitude compared to a standard TDS system. Moreover we demonstrate the generation of amplified pulses as short as 2.5 ps and analyse hurdles preventing us from exploiting all the gain bandwidth available from the broadband THz QCL gain medium. The presentation will end with an outlook on the future developments of the presented technology.

 

Une étude dans le cadre d’une collaboration entre l’IEMN et le Fraunhofer Institute for Photonic Microsystems

fait la couverture du journal Analytical Methods (RSC)

(c) IEMN-ECM – Création graphique : Anne Callewaert – Duchêne

A user-friendly guide to the optimum ultraviolet photolithographic exposure and greyscale dose of SU-8 photoresist on common MEMS, microsystems, and microelectronics coatings and materials

Fraunhofer Institute for Photonic Microsystems, Maria-Reiche-Str. 2, 01109 Dresden, Germany
matthieu.gaudet@ipms.fraunhofer.de

Abstract :

We provide here a user-friendly guide to find the optimum i-line (365 nm) photolithographic exposure dose of an arbitrary thickness of SU-8 on various substrate materials and thin film coatings used in MEMS, microsystems and microelectronics technologies: semiconductors, 2D materials (graphene and MoS2) plastics, glass, metals and ceramics. By considering the variation of the absorption coefficient of SU-8 to ultraviolet light and the effect of partial reflections during the photolithography, we develop an analytical model for the exposure of SU-8. The critical exposure dose of the SU-8 enables a calculation of the exact greyscale photolithographic exposure time of the photoresist which optimizes the fabrication of microsystems structures (microcantilevers, microbridges, microchannels…) of a desired thickness. The optimum exposure doses are presented in both graphical and tabular format to enable user-friendly information based on the desired SU-8 thickness, the desired greyscale thickness and the specific wafer or coating used for the deposition. Interestingly, in the context of grey-scale lithography the model predicts that the surface reflectivity has a major impact on the resulting membrane thickness for a fixed dose and reducing the SU-8 thickness – on a highly reflecting surface a thicker membrane is obtained, on a low reflecting surface a thinner membrane in obtained when reducing the SU-8 thickness. The result is a useful guide for designers working with SU-8 in the context of many fabrication processes, e.g. MEMS, laboratory on a chip, microfluidics, microsystems, microengineering, micromoulding, and flexible electronics etc. – where a myriad of coatings and wafers are now used.

Anal. Methods, 2017,9, 2495-2504
DOI: 10.1039/C7AY00564D, Paper

Sputtered Titanium Carbide Thick Film for High Areal Energy on Chip Carbon-Based Micro-Supercapacitors

Manon Létiche, Kevin Brousse, Arnaud Demortière, Peihua Huang, Barbara Daffos,Sébastien Pinaud, Marc Respaud, Bruno Chaudret, Pascal Roussel, Lionel Buchaillot, Pierre Louis Taberna, Patrice Simon, and Christophe Lethien*

The areal energy density of on-chip micro-supercapacitors should be improved in order to obtain autonomous smart miniaturized sensors. To reach this goal, high surface capacitance electrode (>100 mF cm−2) has to be produced while keeping low the footprint area. For carbide-derived carbon (CDC) micro-supercapacitors, the properties of the metal carbide precursor have to be fine-tuned to fabricate thick electrodes. The ad-atoms diffusion process and atomic peening effect occurring during the titanium carbide sputtering process are shown to be the key parameters to produce low stress, highly conductive, and thick TiC films. The sputtered TiC at 10−3 mbar exhibits a high stress level, limiting the thickness of the TiC-CDC electrode to 1.5 µm with an areal capacitance that is less than 55 mF cm−2 in aqueous electrolyte. The pressure increase up to 10−2 mbar induces a clear reduction of the stress level while the layer thickness increases without any degradation of the TiC electronic conductivity. The volumetric capacitance of the TiC-CDC electrodes is equal to 350 F cm−3 regardless of the level of pressure. High values of areal capacitance (>100 mF cm−2) are achieved, whereas the TiC layer is relatively thick, which paves the way toward high-performance micro-supercapacitors.

First published: 31 March 2017
>> DOI: 10.1002/adfm.201606813

© WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Présentation de la plateforme Microscopie en champ proche

Vendredi 31 mars 2017 à 9:00
Amphithéâtre du LCI IEMN

Ce séminaire est destiné aux membres du laboratoire souhaitant (mieux) connaitre la plateforme et les possibilités offertes pour l’analyse de surfaces, de composants et de nanostructures jusqu’à l’échelle atomique à l’aide des instruments AFM (microscope à force atomique) et STM (microscope à effet tunnel).

Programme prévisionnel :

  • 9:00 : Introduction « Scanning Probe Microscopy » Dominique Deresmes
  • 9:15 : La microscopie à force atomique à l’IEMN Dominique Deresmes
  • 9:35 : Mesures AFM en liquide pour la caractérisation de matériaux actifs Alexis Vlandas
  • 9:55 : Mesures des propriétés électriques à l’échelle de la molécule par microscopie champ proche Stéphane Lenfant
  • 10:15 : Café
  • 10:35 : La microscopie à effet tunnel à l’IEMN Maxime Berthe
  • 10:55 : Exemples et applications de la microscopie à effet tunnel Bruno Grandidier

CONTACT :
Maxime Berthe
Ingénieur de Recherche – Plateforme Champ Proche
Tél : +33 (0)3 2019 7863
maxime.berthe@iemn.fr

Séminaire: Electroactive 2D-Materials: Growth, Properties and Applications – Pr Mohamed Siaj

Jeudi 27 avril 2017 14 h00,
Amphithéâtre de l’IEMN

Pr Mohamed Siaj, Professeur invité Université Lille 1, IUT A
Chemistry Department, Université du Québec à Montréal (UQAM)
Abstract.
Two-dimensional (2D) materials have attracted much attention due to their unique properties. Controllable synthesis of 2D materials with high quality and high efficiency is essential for their large-scale applications. In parallel to the chemical synthesis  route, chemical vapor deposition (CVD) has been one of the most important techniques for the synthesis of 2D materials. For the present talk I will briefly overview our most recent work on CVD growth of graphene, boron nitride, core-shell nanoparticles@graphene and transition metal dichalcogenides (TMDs) including MoSe2 and WSe2. In parallel, I will show that the resulting electroactive nanomaterials could be used as electrodes for chemical and biosensing as well as hydrogen evolution reaction applications.
 
Short CV.
Mohamed Siaj holds the Canada Research Chair in 2D-Materials for Chemical and Biosensing applications since 2016. He received his Ph.D. in Chemistry at Laval University, Quebec, Canada, under the supervision of Peter McBreen, a world leader in Surface Science. Following postdoctoral training at the Colin Nuckolls group at Columbia University, New York, a leading institution in graphene research, Siaj joined the Department of Chemistry at Université de Quebec à Montréal as an assistant professor, and he is holding the rank of associate professor since 2012. He is acting as Co-Director of the Research Center on Nanomaterials and Energy (NanoQAM) and Director of Analysis of Materials and Microsystems Regrouping (RAMM), Faculty of Science, UQAM. Prof. Siaj has extensive experience in different areas of surface science and nanomaterials-based graphene. Siaj’s group activities focus on the growth, synthesis, processing and characterization of advanced nanostructured electroactive materials and their integration into chemical and biosensors.

 

Première journée de rencontre du Réseau Optique, Photonique et Applications Lasers (OPAL)

Le réseau régional Optique Photonique et Applications Lasers organise sa première journée de rencontre le 15 Mars 2017 à l’Amphithéâtre de l’IRCICA sur la Haute Borne à Villeneuve d’Ascq

Le réseau Optique, Photonique et Applications Lasers (OPAL) vient d’être créé dans la région Hauts-de-France
Il a pour mission :
• d’identifier les acteurs relevant de son champ thématique dans la région Hauts-de-France ;
• de mettre en place une organisation et des actions structurantes pour sa communauté ;
• d’organiser les échanges et le partage du savoir, des compétences et des bonnes pratiques ;
• de proposer des actions de formation ;
• d’être des acteurs et interlocuteurs auprès des tutelles et des collectivités territoriales.

Pour cela, il bénéficie du soutien du Réseau Optique et Photonique (ROP) de la plateforme des réseaux de la Mission pour l’Interdisciplinarité du CNRS (http://www.cnrs.fr/mi/spip.php?article465) et du CERLA.

Le réseau OPAL s’organise sur la base du volontariat. Toute personne souhaitant adhérer au réseau et à sa liste de diffusion peut adresser sa demande à : opal-contact@services.cnrs.fr

Cette première rencontre des membres du réseau régional métier OPAL est ouverte à tous (membres et futurs membres), elle présentera les différentes forces de compétences ou instrumentales de la région Hauts-de-France dans le domaine de l’optique.

Quelques présentations scientifiques, beaucoup d’échanges, posters et buffet au sein de l’Institut de Recherche sur les Composants logiciels et matériels pour l’Information et la Communication Avancée à l’université de Lille Sciences et Technologies (accès).

Pour participer gratuitement à cette journée dont le programme provisoire est en ligne, inscrivez-vous jusqu’au 27 Février 2017 sur : https://opal.sciencesconf.org/