Conférence du Pr. Shoji Takeuchi dans le cadre des activités microsystèmes – SMMiL-E – du CPER Cancer

Pr. Shoji Takeuchi

Microfluidic technology for 3D tissue construction

Thursday 6th July 2017 at 10h45 am

Institut de Biologie de Lille, Lecture hall
1, rue du Professeur Calmette
59021, LILLE

After receiving a B.E., M.E. and Ph.D. in Mechanical Engineering from the University of Tokyo, Japan, in 1995, 1977, and 2000, respectively, Shoji joined the faculty. He is Professor in the Institute of Industrial Science at the University of Tokyo and Director of the Collaborative Research Center for Bio/Nano Hybrid Process at that institution. He is also a Visiting Professor, iCeMs, at Kyoto University

Research Interests: Shoji studies biohybrid systems, tissue engineering, artificial cells/lipid bilayer membranes, and MEMS/microfluidic devices. His group focuses on the design and fabrication of bio-hybrid systems that combine bio-functional materials with micro/nano devices. He has developed in vivo sensors for physiologic monitoring and micro neural electrodes that can be used as the neural interfaces between living organs and external monitors.

Professional Activities and Awards: Shoji has authored more than 140 peer-reviewed publications, filed over 70 patents, and served on technical program committees for numerous conferences. He has been recognized with many honors including the MEXT Young Scientists’ Prize in 2008, the JSP prize in 2010, and the ACS Analytical Chemistry Young Innovator Award in 2015.

A selection by Shoji that best represent his areas of research:

Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes
Koki Kamiya, Ryuji Kawano, Toshihisa Osaki, Kazunari Akiyoshi, and Shoji Takeuchi
Nature Chemistry, vol. 8, pp. 881-889, 2016

Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6
Shigenori Miura, Koji Sato, Midori Kato-Negishi, Tetsuhiko Teshima and Shoji Takeuchi
Nature Communications, vol. 6, 8871, 2015

Metre-long cell-laden microfibres exhibit tissue morphologies and functions
Hiroaki Onoe, Teru Okitsu, Akane Itou, Midori Kato-Negishi, Riho Gojo, Daisuke Kiriya, Koji Sato, Shigenori Mirua, Shintaroh Iwanaga, Kaori Kuribayashi-Shigetomi, Yukiko Matsunaga, Yuto Shimoyama, and Shoji Takeuchi
Nature Materials, vol.12, pp. 584-590, 2013

Long-term in vivo glucose monitoring using fluorescent hydrogel fibers
Yun Jung Heo, Hideaki Shibata, Teru Okitsu, Tetsuro Kawanishi, and Shoji Takeuchi
Proc. Natl. Acad. Sci. USA, vol. 108(33), pp. 13399-13403, 2011

Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors
Nobuo Misawaa, Hidefumi Mitsunob, Ryohei Kanzakic, and Shoji Takeuchi
Proc. Natl. Acad. Sci. USA, vol. 107(35), pp. 15340-15344, 2010

Trap-and-Release Integrated Microfluidic System for Dynamic Microarray Applications
W-H. Tan and Shoji Takeuchi
Proc. Natl. Acad. Sci. USA, vol. 104, no. 4, pp. 1146-1151, 2007

Merci de confirmer votre participation par mail au plus tard le vendredi 30 juin 2017 avec vos Nom, Prénom, Affiliation à l’adresse suivante veronique.labbe@lille.limms.fr

Conférence du Pr. Shoji Takeuchi dans le cadre des activités microsystèmes – SMMiL-E – du CPER Cancer

Pr. Shoji Takeuchi

Microfluidic technology for 3D tissue construction

Thursday 6th July 2017 at 10h45 am

Institut de Biologie de Lille, Lecture hall
1, rue du Professeur Calmette
59021, LILLE

After receiving a B.E., M.E. and Ph.D. in Mechanical Engineering from the University of Tokyo, Japan, in 1995, 1977, and 2000, respectively, Shoji joined the faculty. He is Professor in the Institute of Industrial Science at the University of Tokyo and Director of the Collaborative Research Center for Bio/Nano Hybrid Process at that institution. He is also a Visiting Professor, iCeMs, at Kyoto University

Research Interests: Shoji studies biohybrid systems, tissue engineering, artificial cells/lipid bilayer membranes, and MEMS/microfluidic devices. His group focuses on the design and fabrication of bio-hybrid systems that combine bio-functional materials with micro/nano devices. He has developed in vivo sensors for physiologic monitoring and micro neural electrodes that can be used as the neural interfaces between living organs and external monitors.

Professional Activities and Awards: Shoji has authored more than 140 peer-reviewed publications, filed over 70 patents, and served on technical program committees for numerous conferences. He has been recognized with many honors including the MEXT Young Scientists’ Prize in 2008, the JSP prize in 2010, and the ACS Analytical Chemistry Young Innovator Award in 2015.

A selection by Shoji that best represent his areas of research:

Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes
Koki Kamiya, Ryuji Kawano, Toshihisa Osaki, Kazunari Akiyoshi, and Shoji Takeuchi
Nature Chemistry, vol. 8, pp. 881-889, 2016

Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6
Shigenori Miura, Koji Sato, Midori Kato-Negishi, Tetsuhiko Teshima and Shoji Takeuchi
Nature Communications, vol. 6, 8871, 2015

Metre-long cell-laden microfibres exhibit tissue morphologies and functions
Hiroaki Onoe, Teru Okitsu, Akane Itou, Midori Kato-Negishi, Riho Gojo, Daisuke Kiriya, Koji Sato, Shigenori Mirua, Shintaroh Iwanaga, Kaori Kuribayashi-Shigetomi, Yukiko Matsunaga, Yuto Shimoyama, and Shoji Takeuchi
Nature Materials, vol.12, pp. 584-590, 2013

Long-term in vivo glucose monitoring using fluorescent hydrogel fibers
Yun Jung Heo, Hideaki Shibata, Teru Okitsu, Tetsuro Kawanishi, and Shoji Takeuchi
Proc. Natl. Acad. Sci. USA, vol. 108(33), pp. 13399-13403, 2011

Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors
Nobuo Misawaa, Hidefumi Mitsunob, Ryohei Kanzakic, and Shoji Takeuchi
Proc. Natl. Acad. Sci. USA, vol. 107(35), pp. 15340-15344, 2010

Trap-and-Release Integrated Microfluidic System for Dynamic Microarray Applications
W-H. Tan and Shoji Takeuchi
Proc. Natl. Acad. Sci. USA, vol. 104, no. 4, pp. 1146-1151, 2007

Merci de confirmer votre participation par mail au plus tard le vendredi 30 juin 2017 avec vos Nom, Prénom, Affiliation à l’adresse suivante veronique.labbe@lille.limms.fr