H.D.R. Contributions à la compréhension du canal de propagation sans-fil MIMO : modèles, applications et perspectives – GAILLOT, DAVY

HABILITATION A DIRIGER DES RECHERCHES – UNIVERSITE DE LILLE

DAVY GAILLOT
27 mars à 10h30
Amphithéâtre 1A12 – IUT-A

 

Ecole doctorale : Sciences Pour l’Ingénieur (SPI)
Laboratoire/Etablissement : IEMN-IRCICA, Université de Lille – FST
Discipline : SCIENCES PHYSIQUES

LES MEMBRES DU JURY :

Garant de l’habilitation :

  • MME. LIENARD Martine, Professeure de l’Université de Lille – FST

Rapporteurs :

  • M. BENLARBI-DELAI Aziz, Professeur de Sorbonne Université
  • M. EL ZEIN Ghaïs, Professeur de l’INSA Rennes
  • M. VAUZELLE Rodolphe, Professeur de l’Université de Poitiers

Examinateurs :

  • M. CLAVIER Laurent, Professeur de l’Institut Mines TELECOM Lille-Douai
  • M. OESTGES Claude, Professeur de l’Université Catholique de Louvain, Belgique
  • SOUTENANCE : Mardi 27 Mars 2018 à 10h30, IUT-A Amphi 1A12

HDR_2018_Davy Gaillot

Séminaire : Molecular spin coupling at the tip of a STM

Par Laurent Limot
chercheur CNRS à l’IPCMS à Strasbourg
Contact : limot@ipcms.unistra.fr

Mercredi 16 avril 2018 à 10h30
IEMN Salle du conseil – Villeneuve d’Ascq

 

Abstract :

Recent advances in addressing and controlling the spin states of a surface-supported object (atom or molecule) have further accredited the prospect of quantum computing and of an ultimate data-storage capacity [1]. Information encoding requires that the object must possess stable magnetic states, in particular magnetic anisotropy to yield distinct spin-dependent states in the absence of a magnetic field together with long magnetic relaxation times. Scanning probe techniques have shown that inelastic electron tunneling spectroscopy (IETS) within the junction of a scanning tunneling microscope (STM) is a good starting point to study the stability of these spin states [2]. STM-IETS allows for an all-electrical characterization of these states by promoting and detecting spin-flip excitations within the object of interest. As spin excitations need however to be preserved from scattering events with itinerant electrons, single objects are usually placed on non-metallic surfaces such as thin-insulating layers or superconductors. In this sense, new approaches to improve the detection of spin-flip excitations are desirable. With this purpose we present here a novel strategy based on the molecular functionalization of a STM tip. We study the surface magnetism of a simple doubledecker molecule, nickelocene [Ni(C5H5)2], which is adsorbed directly on a copper surface. By means of X-ray magnetic circular dichroism and density functional theory calculations, we show that nickelocene on the surface is magnetic (Spin = 1) and possesses a uniaxial magnetic anisotropy, while IETS reveals an exceptionally efficient spin-flip excitation occurring in the molecule [3]. Interestingly, nickelocene preserves its magnetic moment and magnetic anisotropy not only on the surface, but also in different metallic environments. Taking advantage of this robustness, we are able to functionalize the STM tip with a nickelocene [3,4], which can then be employed as a portable source of inelastic excitations. As we will show during the talk, IETS can then be used to probe the interaction between a surface-supported object and the nickelocene tip, including a magnetic interaction.

M. Ormaza1, P. Abufager2, B. Verlhac1, N. Bachellier1, M.-L. Bocquet3, N. Lorente4, and Laurent Limot1,*
1Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
2Instituto de Física de Rosario, CONICET, Universidad Nacional de Rosario, Argentina
3Ecole Normale Supérieure, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
4CFM/MPC and DIPC, 20018 Donostia-San Sebastián, Spain

References
[1] F.D. Natterer et al., Nature 543, 226 (2017); T. Choi et al., Nat. Nanotech. 6 (2017)
[2] A.J. Heinrich, J.A. Gupta, C.P. Lutz, and D.M. Eigler, Science 306, 466 (2004)
[3] M. Ormaza et al., Nano Lett. 17, 1877 (2017)
[4] M. Ormaza et al., Nat. Commun. 8, 1974 (2017)

 

 

date_04-05

Conference : Prototype of Terahertz Communications at 300 GHz: Devices, Packages

HO-JIN-SONG_Pohang_University_of_Science_and_Technology-POSTECH

Dr. HO-JIN SONG, Pohang University of Science and Technology (POSTECH)

Tuesday 5 April at 10h30

Conférence 10:30
Anfiteather – IEMN-LCI Institut d’Electronique, de Microélectronique et de Nanotechnologie U.M.R C.N.R.S 8520 – Laboratoire Central – Cité Scientifique – Avenue Poincaré – CS 60069 – 59652 VILLENEUVE D’ASCQ CEDEX

Intervenants

Pohang-University-of-Science-and-Technology_logo

Lire la suite

Les Mardis de l’Innovation : L’enjeu global du stockage de l’énergie pour l’avenir de l’internet des objets, des énergies alternatives et de la mobilité

Mardi 20 mars 2018

Accueil 18:00 – Conférence 18:30 – 20:30
CNRS, 3 rue Michel-Ange, 75016 Paris

Les technologies de stockage de l’énergie sont au cœur d’un enjeu mondial considérable. L’avenir de beaucoup d’innovations est lié à d’importants progrès dans les capacités de stockage compact et de recharges rapide des batteries (l’automobile et toutes les autres formes de mobilité, jusqu’au smartphone notamment). Les grandes énergies alternatives (éolien et solaire), n’étant pas continue, leur efficacité dans les réseaux futurs est également liée à l’amélioration du stockage de l’électricité. Quant au monde gigantesque des objets connectés qui se prépare, il est très consommateur de batteries miniaturisées à très longue durée de vie sans rechargement. Si aujourd’hui le lithium est le matériau phare, avec de multiples combinaisons, d’autres matériaux et des technologies alternatives comme la pile à combustible progressent rapidement. Voyage au cœur d’une compétition mondiale allant de la recherche avancée sur l’efficacité des batteries et leur recyclage à l’accès aux matériaux et débouchant sur une bataille industrielle mondiale dominée aujourd’hui par l’Asie.

Intervenants

  • François BARSACQ, PDG, EasyLi, concepteur et fabricant de solutions de stockage d’énergie
  • Patrice SIMON, Réseau sur le Stockage Electrochimique de l’Energie, RS2E
  • Christophe LETHIEN, Institut d’électronique, de microélectronique et de nanotechnologie , IEMN, Université de Lille, CNRS
  • Nicolas LECLERE, Responsable Pôle Innovation Motorisations Electrifiées, Groupe PSA

Séminaire : ‘Substrate-Integrated-Waveguide-Based Antenna Systems for 5G and the Internet-of-Things’

mardi 20 mars à 11h00 – Amphithéâtre IEMN – LCI Villeneuve d’Ascq

Dr. Sam Lemey, Ghent University.
Research Disciplines : Electromagnetism and antenna technology  High frequency circuits 
Sam.Lemey@ugent.be

Abstract: The Internet of Things (IoT) and Industry 4.0 will bring a massive change to the way we live and work in the near future. Fueled by the adaption of novel key-enabling technologies, common objects, tools, machinery, and even garments, will be augmented with sensing, processing, and wireless communication/localization capabilities. The pervasive integration of such a smart common objects into the internet will improve our awareness of our surroundings and physical conditions, thereby helping us to make better decisions. However, the far-reaching integration scenarios, the ever-increasing demand for higher data rates and the harsh and hostile IoT/Industry 4.0 environment make antenna design for IoT-applications substantially more challenging.

In this seminar, I will discuss a new class of high-performance low-cost antenna systems for the 5G wireless communication protocol and the Internet of Things.  In particular, the substrate integrated waveguide technology is adopted to implement cavity-backed slot antenna topologies in conventional and unconventional substrate materials. Owing to their extreme antenna-platform isolation, very stable antenna characteristics are obtained in challenging deployment conditions and with active transceiver and energy harvesting electronics directly integrated on the antenna platform. In addition, it will be shown that broadband operation can be obtained by diverse bandwidth enhancement techniques, whereas miniaturization can be obtained by relying on mode symmetries. Their potential will be demonstrated by presenting several broadband designs for smart floors, on-body applications and centimeter-precision localization applications. The seminar will be concluded by discussing the co-design procedure of a passive remote antenna unit for RoF communication and the realization of a compact, wideband and cost-effective mmWave antenna.

Short bio: Sam Lemey [S’14–M’16] (Sam.Lemey@ugent.be) received the M.Sc. degree in electronic engineering from Howest, University College West Flanders, Kortrijk, Belgium, in 2012 and the Ph.D. degree in electrical engineering from Ghent University, Ghent, Belgium, in 2016. He is currently working as a Post-Doctoral researcher at the Electromagnetics Group in the Department of Information Technology (INTEC) at Ghent University. His research focuses on robust antenna systems for wearable applications, energy-harvesting techniques for wireless nodes, active antenna design for the Internet of Things and 5G applications, IR-UWB antenna systems for centimeter-precision localization, novel techniques to implement substrate integrated waveguide structures in innovative materials, and full-wave/circuit co-optimization frameworks to realize active antenna systems.

Deux médailles d’argent CNRS décernées à deux chercheuses de l’IEMN

Lien : http://www2.cnrs.fr/presse/communique/5493.htm

Sabine Szunerits (à gauche) et Anne-Christine Hladky (à droite) ©Joaquim Dassonville

Comme chaque année, le Centre National de la Recherche Scientifique décerne la médaille d’argent afin de distinguer des chercheur.e.s pour l’originalité, la qualité et l’importance de leurs travaux, reconnus sur le plan national et international.

Parmi les vingt lauréat.e.s de l’année 2018 figure deux chercheures de l’IEMN (UMR 8520 – CNRS/Université de Lille/ISEN/UVHC/Centrale Lille) :

Sabine Szunerits, Spécialiste des biocapteurs et de la nano-médecine pour le traitement des infections virales et bactériennes ou l’hypothermie.
Professeure des Universités exerçant au sein du Département de Chimie de l’Université de Lille et au sein du groupe NanoBiointerface de l’IEMN a été distinguée par l’Institut de Chimie – INC.

Anne-Christine Hladky, Experte en métamatériaux acoustiques.
Directrice de Recherche au CNRS et responsable du groupe ACOUSTIQUE de l’IEMN a été distinguée par l’Institut des Sciences de l’Ingénierie et des Systèmes – INSIS.

Téléchargez le communique de Presse CNRS

Séminaire : « Quantitative Scanning Probe Microscopy Techniques for Heat Transfer Management in nanomaterials and nanodevices »

mardi 20 mars à 17h45 – ISEN Lille

Séverine Gomès
CNRS researcher, Micro and Nanoscale Heat Transfer group at the Centre for Energy and Thermal Sciences, Lyon University

Abstract: The control of heat flow is central to all technologies. According to the first law of thermodynamics, heat is the universal consequence of physical activity. At the same time modern material science and technology is increasingly devoted to the control of matter on the nanoscale and miniaturization of device elements well below 100 nm. By nano-structuring materials their physical properties may be engineered to achieve optimal performance. Examples include materials used in renewable energy generation (thermoelectric, photovoltaics) and structural composites. Thermal control is the dominant problem in many of these fields. For example, the continuous linear scaling of clock frequency in silicon device technology has been suspended for the last ten years as a direct consequence of the decreasing element size and increasing power density in VLSI systems. This is the first aspect of Moore’s law to fail and it has failed directly because of thermal management problems at the nanoscale.

The flow of heat at the nanoscale is completely different from that experienced in macroscopic systems. The dominant phonon wavelengths at room temperature are of order a nanometer with ballistic mean-free path extending from tens of nanometers (in copper) to hundreds of nanometers in Si. Accordingly, at the nanoscale heat flow in solids ceases to be entirely diffusive and may, indeed, be quantized. Convection is suppressed. Radiative transport, where significant, takes place in the near field, since the wavelength of thermal photons is approximately 10 µm at room temperature. Accordingly, the normal methods of modelling and design used for macroscopic thermal work are completely inappropriate.

Effective tools for thermal measurement at the nanoscale are limited. The highest spatial resolution systems which are used for quantitative thermal measurement are based on optical effects, such as IR thermal emission, Raman spectroscopy or photo-reflectance. The spatial resolution of all of these methods is limited to 500 nm or greater. The key technique for thermal measurement at the nanoscale is Scanning Thermal Microscopy (SThM), but this remains highly non-quantitative in normal use. The need is for a complete thermal measurement and modelling technology for use at the nanoscale.

In this talk I will outline our efforts in better understanding the heat transfer and measuring thermal properties at the micro and nanoscales. I will give my feedback after four years as scientific coordinator of a European large scale- NMP Project QUANTIHEAT that was centered around the SThM technique to solve the problem of thermal metrology at the nano-scale and delivering validated standards, methods and modelling tools for nano-thermal design and measurement and gathered 21 strategic partners in Europe.

Short bio:
Dr Séverine Gomès received her European PhD in Physics at the University of Reims, France in 1999.
She is a permanent CNRS researcher, head of the Micro and Nanoscale Heat Transfer group at the Centre for Energy and Thermal Sciences (CETHIL), a common center of the National Institute of Applied Sciences in Lyon, CNRS and the University Claude-Bernard of Lyon.
She was recruited in 2001 by CNRS in the area of Scanning Thermal Microscopy (SThM), a scanning probe microscopy method with which she worked during her PhD in collaboration with the the group of Hubert Pollock and Azzedine Hammiche at Lancaster University (ULANC, UK). She was awarded the CNRS Bronze Medal in 2005 for her pioneering works on SThM.
Her main research interests deal with the development and the application of SThM and electrical methods with the goals of studying heat generation and transport at micro and nanoscales and measuring thermal properties of nanostructured materials and local temperature. During 8 years (2007-2014) she was co-responsible along with Prof. O. Kolosov (ULANC), for the ‘Local Probes’ group in the ‘Advanced Metrology’ axis of the CNRS-sponsored European Research Network: ‘Thermal NanoSciences and NanoEngineering’. From dec. 2013 to nov. 2017, she was the scientific coordinator of the European large scale- NMP Project QUANTIHEAT.

Contact :
Séverine Gomes – CETHIL UMR 5008
Mail : Severine.gomes@insa-lyon.fr
Phone : 04 72 43 64 28

Séminaire CINTRA – THALES

A l’IEMN , en salle du conseil le Jeudi 8 Mars 2017 à partir de 9h15
 
UMI 3288 CINTRA, CNRS – NTU Singapore – Thales : Research activities and recent achievements
 
P. Coquet, Univ. of Lille – Director of CINTRA, B.K. Tay, NTU Singapore – Deputy Director, Q. Dinh, Thales Singapore – Deputy Director, D. Birowosuto.
Abstract:
CINTRA UMI 3288 is a joint laboratory between CNRS, Nanyang Technological University and Thales Group. It is located in Singapore and is developing research activities on Nano-electronics and Nano-photonics technologies. http://cintra.ntu.edu.sg/Pages/default.aspx
IEMN is one of the historical partners of CINTRA and there are several on-going projects between IEMN and CINTRA. The objective of the presentation will be to give an overview of the recent activities developed in CINTRA with the perspective of initiating new joint projects.

The 3 research thrusts of CINTRA will be detailed.
  • Carbon based Materials and Devices: Carbon nanotubes, graphene, BN, foam like materials, with applications in RF, 3D integration, thermal management, energy storage 
  • New Nano-materials and Structures: 2D TMD, nanowires, defect induce emitters, with applications in nano light sources, quantum sensing, gas sensing, radiation detection, energy harvesting
  • Nano-photonics Technologies: nanostructured optical fibers, III-V 

http://cintra.ntu.edu.sg/Pages/default.aspx

http://www.ntu.edu.sg/AboutNTU/CorporateInfo/Pages/Intro.aspx

L’IEMN et HORIBA JOBIN YVON s’associent pour créer une équipe mixte de recherche

HORIBA JOBIN YVON et l’Institut d’Electronique de Microélectronique et de Nanotechnologie (IEMN-CNRS) s’associent et créent une « équipe mixte » de recherche visant à développer des outils de caractérisation innovants ainsi que la caractérisation physico-chimique de nanomatériaux. Cette structure, financée par des crédits FEDER de la Région Hauts-de-France, soutient des actions de recherche engagées depuis 2012, notamment sur la fabrication de sondes micro-nano-fabriquées pour applications à la spectroscopie Raman dont HORIBA JOBIN YVON est leader mondial

La thématique de recherche de l’équipe mixte concernera le développement d’outils de caractérisation innovants ainsi que la caractérisation physico-chimique de nanomatériaux par techniques de microscopie à force atomique et de spectroscopie Raman et infrarouge à exaltation de pointe. Le travail portera à la fois sur le design et fabrication de nouvelles générations de sondes de microscopie champ proche par techniques de micro et nano-fabrication, et un travail de nano-caractérisation avancée de propriétés physico-chimiques de matériaux nouveaux.

Références

 HORIBA JOBIN YVON est l’un des plus importants fabricants de systèmes et composants de spectroscopie et d’analyses. L’entreprise est leader mondial en spectroscopie Raman. Elle conçoit et fabrique à Villeneuve d’Ascq des appareils à la pointe de la technologie depuis plus de 50 ans. Les équipes de R&D et du laboratoire d’applications HORIBA Villeneuve d’Ascq travaillent actuellement sur le « nano-Raman », technique exploitant l’effet d’exaltation de pointe (« Tip Enhanced Raman Spectroscopy » ou TERS) et qui permet d’apporter à la spectroscopie Raman la résolution spatiale nanométrique des techniques de microscopie champ proche comme la microscopie à force atomique. http://www.horiba.com/fr/

L’IEMN (UMR8520, CNRS – Université de Lille – Université de Valenciennes et du Hainaut-Cambrésis – Centrale Lille et ISEN-yncréa) a une expertise reconnue internationalement en micro et nano-fabrication (l’IEMN est membre du réseau RENATECH), ainsi qu’en microscopie champ proche. L’IEMN a été lauréat en 2012 d’un PIA EQUIPEX Excelsior (www.excelsior-ncc.eu) couplant la microscopie champ proche aux excitations électriques et/ou optiques du continu au THz. Dans ce contexte, l’IEMN a développé des actions de recherche couplant microscopie champ proche et optique (par exemple SNOM infrarouge ou Terahertz, micro et nano-fabrication de cantilevers), et engagé une activité de recherche en convergence avec les applications visées par la société HORIBA.

Contacts

Chercheur l  Thierry Mélin l T 04 32 50 06 59 l thierry.melin@univ-lille1.fr
Presse CNRS l Stéphanie Barbez l T 03 20 12 28 18l stephanie.barbez@cnrs.fr
Presse Université de Lille l Cristelle Fontaine l T 03 20 96 52 57l cristelle.fontaine@univ-lille2.fr

Lire le communiqué de presse