Séminaire : TITRE

Dr PRENOM NOM
ECOLE, PAYS

JOUR 99 MOIS 2018 à 99h00
IEMN Salle du conseil – Villeneuve d’Ascq

Abstract :

RESUME

IEMN : CS Industry Award

Rewarding excellence, innovation and success

La compagnie ALLOS semiconductors s’est vu décerner un CS Award portant sur des travaux effectués en étroite collaboration avec l’équipe de recherche du Dr Farid Medjdoub de l‘Institut d’électronique, de microélectronique et de nanotechnologie. Les derniers résultats de l’IEMN démontrent notamment une tension de claquage de plus de 1400 V pour les mesures verticales et latérales sur le prochain produit d’ALLOS, l’épiwafer GaN-on-Si pour les appareils de 1200 V.

Conference : Prototype of Terahertz Communications at 300 GHz: Devices, Packages

HO-JIN-SONG_Pohang_University_of_Science_and_Technology-POSTECH

Dr. HO-JIN SONG, Pohang University of Science and Technology (POSTECH)

Tuesday 6 April at 14h00

Conférence
Anfiteather – IEMN-LCI Institut d’Electronique, de Microélectronique et de Nanotechnologie U.M.R C.N.R.S 8520 – Laboratoire Central – Cité Scientifique – Avenue Poincaré – CS 60069 – 59652 VILLENEUVE D’ASCQ CEDEX

Intervenants

Pohang-University-of-Science-and-Technology_logo

Lire la suite

Les Mardis de l’Innovation : L’enjeu global du stockage de l’énergie pour l’avenir de l’internet des objets, des énergies alternatives et de la mobilité

Mardi 20 mars 2018

Accueil 18:00 – Conférence 18:30 – 20:30
CNRS, 3 rue Michel-Ange, 75016 Paris

Les technologies de stockage de l’énergie sont au cœur d’un enjeu mondial considérable. L’avenir de beaucoup d’innovations est lié à d’importants progrès dans les capacités de stockage compact et de recharges rapide des batteries (l’automobile et toutes les autres formes de mobilité, jusqu’au smartphone notamment). Les grandes énergies alternatives (éolien et solaire), n’étant pas continue, leur efficacité dans les réseaux futurs est également liée à l’amélioration du stockage de l’électricité. Quant au monde gigantesque des objets connectés qui se prépare, il est très consommateur de batteries miniaturisées à très longue durée de vie sans rechargement. Si aujourd’hui le lithium est le matériau phare, avec de multiples combinaisons, d’autres matériaux et des technologies alternatives comme la pile à combustible progressent rapidement. Voyage au cœur d’une compétition mondiale allant de la recherche avancée sur l’efficacité des batteries et leur recyclage à l’accès aux matériaux et débouchant sur une bataille industrielle mondiale dominée aujourd’hui par l’Asie.

Intervenants

  • François BARSACQ, PDG, EasyLi, concepteur et fabricant de solutions de stockage d’énergie
  • Patrice SIMON, Réseau sur le Stockage Electrochimique de l’Energie, RS2E
  • Christophe LETHIEN, Institut d’électronique, de microélectronique et de nanotechnologie , IEMN, Université de Lille, CNRS
  • Nicolas LECLERE, Responsable Pôle Innovation Motorisations Electrifiées, Groupe PSA

Séminaire : ‘Substrate-Integrated-Waveguide-Based Antenna Systems for 5G and the Internet-of-Things’

mardi 20 mars à 11h00 – Amphithéâtre IEMN – LCI Villeneuve d’Ascq

Dr. Sam Lemey, Ghent University.
Research Disciplines : Electromagnetism and antenna technology  High frequency circuits 
Sam.Lemey@ugent.be

Abstract: The Internet of Things (IoT) and Industry 4.0 will bring a massive change to the way we live and work in the near future. Fueled by the adaption of novel key-enabling technologies, common objects, tools, machinery, and even garments, will be augmented with sensing, processing, and wireless communication/localization capabilities. The pervasive integration of such a smart common objects into the internet will improve our awareness of our surroundings and physical conditions, thereby helping us to make better decisions. However, the far-reaching integration scenarios, the ever-increasing demand for higher data rates and the harsh and hostile IoT/Industry 4.0 environment make antenna design for IoT-applications substantially more challenging.

In this seminar, I will discuss a new class of high-performance low-cost antenna systems for the 5G wireless communication protocol and the Internet of Things.  In particular, the substrate integrated waveguide technology is adopted to implement cavity-backed slot antenna topologies in conventional and unconventional substrate materials. Owing to their extreme antenna-platform isolation, very stable antenna characteristics are obtained in challenging deployment conditions and with active transceiver and energy harvesting electronics directly integrated on the antenna platform. In addition, it will be shown that broadband operation can be obtained by diverse bandwidth enhancement techniques, whereas miniaturization can be obtained by relying on mode symmetries. Their potential will be demonstrated by presenting several broadband designs for smart floors, on-body applications and centimeter-precision localization applications. The seminar will be concluded by discussing the co-design procedure of a passive remote antenna unit for RoF communication and the realization of a compact, wideband and cost-effective mmWave antenna.

Short bio: Sam Lemey [S’14–M’16] (Sam.Lemey@ugent.be) received the M.Sc. degree in electronic engineering from Howest, University College West Flanders, Kortrijk, Belgium, in 2012 and the Ph.D. degree in electrical engineering from Ghent University, Ghent, Belgium, in 2016. He is currently working as a Post-Doctoral researcher at the Electromagnetics Group in the Department of Information Technology (INTEC) at Ghent University. His research focuses on robust antenna systems for wearable applications, energy-harvesting techniques for wireless nodes, active antenna design for the Internet of Things and 5G applications, IR-UWB antenna systems for centimeter-precision localization, novel techniques to implement substrate integrated waveguide structures in innovative materials, and full-wave/circuit co-optimization frameworks to realize active antenna systems.

Deux médailles d’argent CNRS décernées à deux chercheuses de l’IEMN

Lien : http://www2.cnrs.fr/presse/communique/5493.htm

Sabine Szunerits (à gauche) et Anne-Christine Hladky (à droite) ©Joaquim Dassonville

Comme chaque année, le Centre National de la Recherche Scientifique décerne la médaille d’argent afin de distinguer des chercheur.e.s pour l’originalité, la qualité et l’importance de leurs travaux, reconnus sur le plan national et international.

Parmi les vingt lauréat.e.s de l’année 2018 figure deux chercheures de l’IEMN (UMR 8520 – CNRS/Université de Lille/ISEN/UVHC/Centrale Lille) :

Sabine Szunerits, Spécialiste des biocapteurs et de la nano-médecine pour le traitement des infections virales et bactériennes ou l’hypothermie.
Professeure des Universités exerçant au sein du Département de Chimie de l’Université de Lille et au sein du groupe NanoBiointerface de l’IEMN a été distinguée par l’Institut de Chimie – INC.

Anne-Christine Hladky, Experte en métamatériaux acoustiques.
Directrice de Recherche au CNRS et responsable du groupe ACOUSTIQUE de l’IEMN a été distinguée par l’Institut des Sciences de l’Ingénierie et des Systèmes – INSIS.

Téléchargez le communique de Presse CNRS

Séminaire : « Quantitative Scanning Probe Microscopy Techniques for Heat Transfer Management in nanomaterials and nanodevices »

mardi 20 mars à 14h00 – Amphithéâtre IEMN -LCI Villeneuve d’Ascq

Séverine Gomès
CNRS researcher, Micro and Nanoscale Heat Transfer group at the Centre for Energy and Thermal Sciences, Lyon University

Abstract: The control of heat flow is central to all technologies. According to the first law of thermodynamics, heat is the universal consequence of physical activity. At the same time modern material science and technology is increasingly devoted to the control of matter on the nanoscale and miniaturization of device elements well below 100 nm. By nano-structuring materials their physical properties may be engineered to achieve optimal performance. Examples include materials used in renewable energy generation (thermoelectric, photovoltaics) and structural composites. Thermal control is the dominant problem in many of these fields. For example, the continuous linear scaling of clock frequency in silicon device technology has been suspended for the last ten years as a direct consequence of the decreasing element size and increasing power density in VLSI systems. This is the first aspect of Moore’s law to fail and it has failed directly because of thermal management problems at the nanoscale.

The flow of heat at the nanoscale is completely different from that experienced in macroscopic systems. The dominant phonon wavelengths at room temperature are of order a nanometer with ballistic mean-free path extending from tens of nanometers (in copper) to hundreds of nanometers in Si. Accordingly, at the nanoscale heat flow in solids ceases to be entirely diffusive and may, indeed, be quantized. Convection is suppressed. Radiative transport, where significant, takes place in the near field, since the wavelength of thermal photons is approximately 10 µm at room temperature. Accordingly, the normal methods of modelling and design used for macroscopic thermal work are completely inappropriate.

Effective tools for thermal measurement at the nanoscale are limited. The highest spatial resolution systems which are used for quantitative thermal measurement are based on optical effects, such as IR thermal emission, Raman spectroscopy or photo-reflectance. The spatial resolution of all of these methods is limited to 500 nm or greater. The key technique for thermal measurement at the nanoscale is Scanning Thermal Microscopy (SThM), but this remains highly non-quantitative in normal use. The need is for a complete thermal measurement and modelling technology for use at the nanoscale.

In this talk I will outline our efforts in better understanding the heat transfer and measuring thermal properties at the micro and nanoscales. I will give my feedback after four years as scientific coordinator of a European large scale- NMP Project QUANTIHEAT that was centered around the SThM technique to solve the problem of thermal metrology at the nano-scale and delivering validated standards, methods and modelling tools for nano-thermal design and measurement and gathered 21 strategic partners in Europe.

Short bio:
Dr Séverine Gomès received her European PhD in Physics at the University of Reims, France in 1999.
She is a permanent CNRS researcher, head of the Micro and Nanoscale Heat Transfer group at the Centre for Energy and Thermal Sciences (CETHIL), a common center of the National Institute of Applied Sciences in Lyon, CNRS and the University Claude-Bernard of Lyon.
She was recruited in 2001 by CNRS in the area of Scanning Thermal Microscopy (SThM), a scanning probe microscopy method with which she worked during her PhD in collaboration with the the group of Hubert Pollock and Azzedine Hammiche at Lancaster University (ULANC, UK). She was awarded the CNRS Bronze Medal in 2005 for her pioneering works on SThM.
Her main research interests deal with the development and the application of SThM and electrical methods with the goals of studying heat generation and transport at micro and nanoscales and measuring thermal properties of nanostructured materials and local temperature. During 8 years (2007-2014) she was co-responsible along with Prof. O. Kolosov (ULANC), for the ‘Local Probes’ group in the ‘Advanced Metrology’ axis of the CNRS-sponsored European Research Network: ‘Thermal NanoSciences and NanoEngineering’. From dec. 2013 to nov. 2017, she was the scientific coordinator of the European large scale- NMP Project QUANTIHEAT.

Contact :
Séverine Gomes – CETHIL UMR 5008
Mail : Severine.gomes@insa-lyon.fr
Phone : 04 72 43 64 28

L’IEMN et HORIBA JOBIN YVON s’associent pour créer une équipe mixte de recherche

HORIBA JOBIN YVON et l’Institut d’Electronique de Microélectronique et de Nanotechnologie (IEMN-CNRS) s’associent et créent une « équipe mixte » de recherche visant à développer des outils de caractérisation innovants ainsi que la caractérisation physico-chimique de nanomatériaux. Cette structure, financée par des crédits FEDER de la Région Hauts-de-France, soutient des actions de recherche engagées depuis 2012, notamment sur la fabrication de sondes micro-nano-fabriquées pour applications à la spectroscopie Raman dont HORIBA JOBIN YVON est leader mondial

La thématique de recherche de l’équipe mixte concernera le développement d’outils de caractérisation innovants ainsi que la caractérisation physico-chimique de nanomatériaux par techniques de microscopie à force atomique et de spectroscopie Raman et infrarouge à exaltation de pointe. Le travail portera à la fois sur le design et fabrication de nouvelles générations de sondes de microscopie champ proche par techniques de micro et nano-fabrication, et un travail de nano-caractérisation avancée de propriétés physico-chimiques de matériaux nouveaux.

Références

 HORIBA JOBIN YVON est l’un des plus importants fabricants de systèmes et composants de spectroscopie et d’analyses. L’entreprise est leader mondial en spectroscopie Raman. Elle conçoit et fabrique à Villeneuve d’Ascq des appareils à la pointe de la technologie depuis plus de 50 ans. Les équipes de R&D et du laboratoire d’applications HORIBA Villeneuve d’Ascq travaillent actuellement sur le « nano-Raman », technique exploitant l’effet d’exaltation de pointe (« Tip Enhanced Raman Spectroscopy » ou TERS) et qui permet d’apporter à la spectroscopie Raman la résolution spatiale nanométrique des techniques de microscopie champ proche comme la microscopie à force atomique. http://www.horiba.com/fr/

L’IEMN (UMR8520, CNRS – Université de Lille – Université de Valenciennes et du Hainaut-Cambrésis – Centrale Lille et ISEN-yncréa) a une expertise reconnue internationalement en micro et nano-fabrication (l’IEMN est membre du réseau RENATECH), ainsi qu’en microscopie champ proche. L’IEMN a été lauréat en 2012 d’un PIA EQUIPEX Excelsior (www.excelsior-ncc.eu) couplant la microscopie champ proche aux excitations électriques et/ou optiques du continu au THz. Dans ce contexte, l’IEMN a développé des actions de recherche couplant microscopie champ proche et optique (par exemple SNOM infrarouge ou Terahertz, micro et nano-fabrication de cantilevers), et engagé une activité de recherche en convergence avec les applications visées par la société HORIBA.

Contacts

Chercheur l  Thierry Mélin l T 04 32 50 06 59 l thierry.melin@univ-lille1.fr
Presse CNRS l Stéphanie Barbez l T 03 20 12 28 18l stephanie.barbez@cnrs.fr
Presse Université de Lille l Cristelle Fontaine l T 03 20 96 52 57l cristelle.fontaine@univ-lille2.fr

Lire le communiqué de presse 

L’IEMN et HORIBA JOBIN YVON s’associent pour créer une équipe mixte de recherche

HORIBA JOBIN YVON et l’Institut d’Electronique de Microélectronique et de Nanotechnologie (IEMN-CNRS) s’associent et créent une « équipe mixte » de recherche visant à développer des outils de caractérisation innovants ainsi que la caractérisation physico-chimique de nanomatériaux. Cette structure, financée par des crédits FEDER de la Région Hauts-de-France, soutient des actions de recherche engagées depuis 2012, notamment sur la fabrication de sondes micro-nano-fabriquées pour applications à la spectroscopie Raman dont HORIBA JOBIN YVON est leader mondial

La thématique de recherche de l’équipe mixte concernera le développement d’outils de caractérisation innovants ainsi que la caractérisation physico-chimique de nanomatériaux par techniques de microscopie à force atomique et de spectroscopie Raman et infrarouge à exaltation de pointe. Le travail portera à la fois sur le design et fabrication de nouvelles générations de sondes de microscopie champ proche par techniques de micro et nano-fabrication, et un travail de nano-caractérisation avancée de propriétés physico-chimiques de matériaux nouveaux.

Références

 HORIBA JOBIN YVON est l’un des plus importants fabricants de systèmes et composants de spectroscopie et d’analyses. L’entreprise est leader mondial en spectroscopie Raman. Elle conçoit et fabrique à Villeneuve d’Ascq des appareils à la pointe de la technologie depuis plus de 50 ans. Les équipes de R&D et du laboratoire d’applications HORIBA Villeneuve d’Ascq travaillent actuellement sur le « nano-Raman », technique exploitant l’effet d’exaltation de pointe (« Tip Enhanced Raman Spectroscopy » ou TERS) et qui permet d’apporter à la spectroscopie Raman la résolution spatiale nanométrique des techniques de microscopie champ proche comme la microscopie à force atomique. http://www.horiba.com/fr/

L’IEMN (UMR8520, CNRS – Université de Lille – Université de Valenciennes et du Hainaut-Cambrésis – Centrale Lille et ISEN-yncréa) a une expertise reconnue internationalement en micro et nano-fabrication (l’IEMN est membre du réseau RENATECH), ainsi qu’en microscopie champ proche. L’IEMN a été lauréat en 2012 d’un PIA EQUIPEX Excelsior (www.excelsior-ncc.eu) couplant la microscopie champ proche aux excitations électriques et/ou optiques du continu au THz. Dans ce contexte, l’IEMN a développé des actions de recherche couplant microscopie champ proche et optique (par exemple SNOM infrarouge ou Terahertz, micro et nano-fabrication de cantilevers), et engagé une activité de recherche en convergence avec les applications visées par la société HORIBA.

Contacts

Chercheur l  Thierry Mélin l T 04 32 50 06 59 l thierry.melin@univ-lille1.fr
Presse CNRS l Stéphanie Barbez l T 03 20 12 28 18l stephanie.barbez@cnrs.fr
Presse Université de Lille l Cristelle Fontaine l T 03 20 96 52 57l cristelle.fontaine@univ-lille2.fr

Lire le communiqué de presse 

Les offres de thèse sont en ligne. Rejoignez nous!

Etude théorique et numérique des propriétés optomécaniques de molécules plasmoniques
(Co) – Directeur : Gaëtan LEVEQUE – gaetan.leveque@univ-lille1.fr
(Co) – Directeur :  Abdellatif AKJOUJ – abdellatif.akjouj@univ-lille1.fr
Laboratoire : IEMN
Equipe : EPHONI – Web : http://physique.iemn.fr

Antennes et métamatériaux textiles pour la récupération de l’énergie électromagnétique ambiante
(Co) – Directeur : Éric LHEURETTE – eric.lheurette@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : DOME

Développement de micro-résonateurs optiques pour le diagnostic médical non invasif.
(Co) – Directeur : Joël CHARRIER – joel.charrier@univ-rennes1.fr
(Co) – Directeur : Yannick COFFINIER – yannick.coffinier@univ-lille1.fr
Laboratoires : IEMN/Foton – Web : http://foton.cnrs.fr/v2016
Equipe : Nanobiointerfaces/Systèmes photoniques

Design de surfaces anti-encrassantes pour les industries agroalimentaires 
(Co) – Directeur : Maude JIMENEZ – maude.jimenez@univ-lille1.fr
(Co) – Directeur : Yannick COFFINIER – yannick.coffinier@univ-lille1.fr
Laboratoires : IEMN/Univ-Lille UMET
Equipe : NanoBiointerfaces/ UMET-ISP-R2FIRE – Web :http://umet.univ-lille1.fr/detailscomplets.php?id=52&lang=fr

Etude théorique et expérimentale d’un système neuromorphique CMOS dédié à la reconnaissance
d’une séquence numérique en présence du bruit environnant

Directeur : Christophe LOYEZ – christophe.loyez@iemn.univ-lille1.fr
(Co) – Directeur : François DANNEVILLE – francois.danneville@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipes : CSAM et ANODE

Photomélangeur distribué pour la génération d’ondes Terahertz
(Co) – Directeur : Emilien PEYTAVIT- emilien.peytavit@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : Photonique THz – Web : https://photoniquethz.iemn.univ-lille1.fr

Versatile in situ platform for 5G physical layer evaluation.
(Co) – Directeur : Laurent CLAVIER – laurent.clavier@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : IEMN / IRCICA

NOMA for 5G and M2M networks – modeling and mitigating impulsive – dependent interference.
(Co) – Directeur : Laurent CLAVIER – laurent.clavier@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : IEMN / IRCICA

Conception et réalisation de composants RF agiles
(Co) – Directeur : Anne-Christine HLADKY – anne-chrsitine.hladky@isen.fr
(Co) – Directeur : Bertrand DUBUS – bertrand.dubus@isen.fr
Laboratoire : IEMN
Equipe : Groupe Acoustique

Extensions métrologiques de l’acoustique picoseconde colorée : quantification des énergies d’interface et mesure des contraintes internes
(Co) – Directeur : Arnaud DEVOS – arnaud.devos@isen.iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : Nano-acoustique

Nouveau circuits hybrides opto-mécaniques NEMS/micro-ondes pour le développement de dispositifs électroniques innovants.
(Co) – Directeur : Didier THERON – didier.theron@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : NAM6  – Web : https://nam6.iemn.fr/

Etude du désordre dans une Métasurface PhoXonique
(Co) – Directeur : Yan PENNEC- yan.pennec@univ-lille1.fr
(Co) – Directeur : Eric LHEURETTE – eric.lheurette@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : EPHONI / DOME

Pinces acoustiques sélectives basées sur les vortex acoustiques pour la manipulation sélective, 3D et sans contact de particules micrométriques.
(Co) – Directeur : Michael BAUDOIN- michael.baudoin@univ-lille1.fr
(Co) – Directeur : Olivier BOU MATAR LACAZE – olivier.boumatar@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : AIMAN-FILMS – Web : http://films-lab.univ-lille1.fr/michael/michael/Home.html

Développement de textiles innovants à base de cristaux photoniques
(Co) – Directeur : Vincent THOMY – vincent.thomy@univ-lille1.fr
(Co) – Directeur : Yan PENNEC – yan.pennec@univ-lille1.fr
Laboratoire : IEMN
Equipe : BIOMEMS / EPHONI

Caractérisation exhaustive de transistors HEMT comportant une barrière quaternaire ultra fine pour des applications en bande E
(Co) – Directeur : Jean-Claude DE JAEGER – jean-claude.dejaeger@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : PUISSANCE- Web : http://puissance.iemn.univ-lille1.fr

2D materials-based wearable sensors for healthcare monitoring  or 2D materials-based wearable patches for health monitoring.
(Co) – Directeur : Henri HAPPY – henri.happy@iemn.univ-lille1.fr
(Co) – Directeur : Rabah BOUKHERROUB – rabah.boukherroub@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipes : CARBON – Web : https://carbon.iemn.univ-lille1.fr/
NanoBioInterfaces – Web : http://pang.univ-lille.fr/partners/nanobiointerfaces-team-nbi

Calcul des résistances thermiques d’interface par dynamique moléculaire ab initio. Simulation of thermal interface resistances using first-principles molecular dynamics
(Co) – Directeur : Evelyne LAMPIN – evelyne.lampin@univ-lille.fr
Laboratoire : IEMN
Equipe : Physique/Namaste – Web : http://physique.iemn.univ-lille1.fr/en/namaste/

Surveillance des réseaux embarqués automobiles : une approche conjointe signal et système
(Co) – Directeur : Virginie DEGARDIN – virginie.degardin@univ-lille1.fr
(Co) – Directeur : Vincent COCQUEMPOT – vincent.cocquempot@univ-lille.fr
Laboratoire : IEMN et CRIStAL
Equipes : IEMN-TELICE et CRIStAL-DICOT

Systèmes microfluidiques (BioMEMs) d’étude de l’influence de l’environnement matriciel et crible de nouvelles molécules actives sur la barrière endothéliale et l’angiogenèse
(Co) – Directeur : Dr Fabrice SONCIN – fabrice.soncin@ibl.cnrs.fr
(Co) – Directeur : Dr Dominique COLLARD – collard@iis.u-tokyo.ac.jp
Laboratoire : LIMMS/CNRS-IIS UMI 2820 – – Web : http://limmshp.iis.u-tokyo.ac.jp/
Equipe : SMMiL-E

Exaltation d’interactions lumière-matière et spectroscopie TeraHertz sur objet biologique
(Co) – Directeur : Jean-François LAMPIN – jean-francois.lampin@iemn.univ-lille1.fr
(Co) – Directeur : Romain PERETTI – romain.peretti@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : Photonique TeraHertz

Piégeage optique dans la gamme TeraHertz au sein d’une métasurface
(Co) – Directeur : Jean-François LAMPIN – jean-francois.lampin@iemn.univ-lille1.fr
(Co) – Directeur : Romain PERETTI – romain.peretti@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : Photonique TeraHertz

Etude des propriétés thermoélectrique du polysilicium nanostructuré. Applications à la réalisation de microcapteurs thermiques (radiomètres, fluxmètres, débitmètres…)
(Co) – Directeur : Katir ZIOUCHE – katir.ziouche@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : MITEC

Capteur communicant autonome haute température (> 200 °C) basé sur un microgénérateur thermoélectrique
(Co) – Directeur : Katir ZIOUCHE – katir.ziouche@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : MITEC

Elaboration de nouveaux capteurs thermoélectriques pour la mesure de rayons X
(Co) – Directeur : Katir ZIOUCHE – katir.ziouche@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : MITEC

Development of a 3D microfluidic culture model to study the mechanisms regulating the behaviour of Schistosome parasites in blood vessels and their reproduction.
(Co) – Directeur : Vincent SENEZ  – vincent.senez@isen.iemn.univ-lille1.fr
(Co) – Directeur : Jérôme VICOGNE  – jerome.vicogne@ibl.cnrs.fr
Laboratoire : IEMN et IBL ( http://www.ciil.fr/home/ )
Equipe : BIOMEMS – Chemical Biology of Flatworms  – Web : http://chemicalbiologyflatworms.org

Optimisation des propriétés thermiques et rhéologiques de dispersions de nanoparticules pour évacuation de la chaleur
(Co) – Directeur : Evelyne LAMPIN – evelyne.lampin@univ-lille.fr
Laboratoire : IEMN
Equipe : Physique/SDYNA

Détection de l’activité enzymatique intracellulaire par spectrométrie de masse.
(Co) – Directeur : Yannick COFFINIER – yannick.coffinier@univ-lille1.fr
Laboratoires : IEMN
Equipes : NanoBiointerfaces

Molécules aimants individuelles caractérisées par microscopie à sonde locale pour la spintronique
(Co) – Directeur : Thierry MELIN – thierry.melin@iemn.fr
(Co) – Directeur : Stéphane LENFANT – stephane.lenfant@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : Physique / NCM  – Web : https://physique.iemn.fr/ http://ncm.iemn.univ-lille1.fr/

Codage par métasurfaces pour le contrôle de faisceaux
(Co) – Directeur : Eric LHEURETTE – eric.lheurette@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipes : DOME

Interaction des ondes ultrasonores avec les endommagements en exploitant la transmission de données numériques par ondes guidées : application aux véhicules intelligents
(Co) – Directeur : Emmanuel MOULIN – emmanuel.moulin@univ-valenciennes.fr
(Co) – Directeur : Jamal ASSAAD – jamal.assaad@univ-valenciennes.fr
Laboratoire : IEMN DOAE
Equipes :  TPIA

Contrôle-santé passif de structures basé sur l’interaction des non-linéarités acoustiques de contact avec le bruit vibratoire ambiant.
(Co) – Directeur : Emmanuel MOULIN – emmanuel.moulin@univ-valenciennes.fr
Laboratoire : IEMN
Equipe : Groupes TPIA et AIMAN

Estimation du canal pour les systèmes aux longueurs d’onde millimétriques en utilisant l’acquisition compressé
(Co) – Directeur :Iyad DAYOUB – iyad.dayoub@univ-valenciennes.fr
(Co) – Directeur : Marie.ZWINGELSTEIN-COLIN – marie.zwingelstein-colin@univ-valenciennes.fr
Laboratoire : IEMN-DOAE
Equipe : Groupe COMNUM

Instrumentation hyperfréquence haute impédance basée sur la technique multi-port pour la nano-caractérisation
(Co) – Directeur : Tuami LASRI- tuami.lasri@iemn.univ-lille1.fr
Laboratoire : IEMN
Equipe : MITEC

(Dernière MAJ, 21/03/2018)

* Le mode de financement est théoriquement indiqué dans chaque sujet en pdf. Toutefois, n’hésitez pas à en demander la confirmation au co-encadrant.

 

> Les sujets de thèse de l’année précédente