METAgenierie 2017: Principes et applications des métamatériaux acoustiques pour l’ingénierie

Les métamatériaux sont des matériaux artificiels présentant une structuration à une échelle plus petite que la longueur d’onde leur permettant d’adopter un comportement d’onde sans équivalent dans les matériaux à l’état naturel. Le cadre des métamatériaux est totalement interdisciplinaire, mais dans le cas de l’acoustique, ils suscitent un grand intérêt en raison des propriétés exceptionnelles de propagation et de vibration qu’ils peuvent présenter, ce qui donne lieu à des applications potentielles dans des domaines aussi divers que l’isolation acoustique, l’acoustique urbaine, Le génie civil, la vibroacoustique, le filtrage sélectif de fréquence, la furtivité sous-marine acoustique, le contrôle non destructif ou l’échographie médicale.

L’objectif principal de cette école thématique est de fournir une formation complète aux doctorants, post-doctorants, industriels et ingénieurs sur le thème des métamatériaux. La formation sera menée conjointement par des chercheurs de laboratoires français et étrangers et par des industriels, permettant d’associer les points de vue.

La Vieille Perrotine à Oléron (CAES CNRS)

L’école d’été aura lieu du 2 au 7 juillet 2017 à La Vieille Perrotine, Ile d’Oléron, village de la CAES du CNRS, qui a une tradition d’écoles thématiques avec une grande interdisciplinarité entre la physique, les mathématiques et les Sciences de la Terre.

Une formation sur les métamatériaux acoustiques sera proposée dans des domaines d’applications reconnus (acoustique sous-marine, composants pour les télécommunications, acoustique audible), mais une attention particulière sera portée aux thèmes émergents tels que les métamatériaux acoustiques, mécaniques et sismiques.

L’école d’été commencera par un cours d’initiation. Elle se poursuivra en alternant des cours de formation (CF) permettant l’apprentissage des concepts de base et des cours de recherche (CR) dans les domaines cités ci-dessus. Des séminaires industriels (SI) compléteront la formation en illustrant les défis technologiques et les enjeux sociétaux pour chaque domaine d’application. Enfin, les cafés scientifiques (SC) permettront des discussions informelles entre les parties prenantes et les participants.

Comité d’Organisation

  • Vicent Romero-García (LAUM, UMR 6613).
  • Sébastien Guenneau (Institut Fresnel, UMR 7249).
  • Anne-Christine Hladky-Hennion, (IEMN,  UMR 8520).
  • Sarah Benchabane (Institut FEMTO-ST, UMR 6174).
  • Manuel Collet (LTDS, UMR 5513).
  • Philippe Roux (ISTerre, UMR 5275).

Liste des Intervenants.

  • Prof Bahram Djafari-Rouhani (IEMN)
  • Prof José Sánchez-Dehesa (Universitat Politècnica de València)
  • Prof Pierre Deymier (University of Arizona)
  • Dr Sarah Benchabane (FEMTO-ST)
  • Dr Marc Versaevel (Aircelle)
  • Prof. Jérôme Vasseur (IEMN)
  • Dr Alexandre Reinhardt (CEA/LETI)
  • Prof. Bruno Morvan (LOMC)
  • Dr Philippe Roux (ISterre)
  • Dr. Thierry Laroche (frec|n|sys)
  • Dr Clément Lagarrigue (Metacoustic)
  • Dr Manuel Collet (LTDS)
  • Dr Jean Philippe Groby (LAUM)
  • Dr Agnès Maurel (Institut Langevin)
  • Dr Nicolas Côté (Wavely)
  • Dr Christian Audoly (DCNS)

>> Consulter le programme détaillé

Conférence du Pr. Shoji Takeuchi dans le cadre des activités microsystèmes – SMMiL-E – du CPER Cancer

Pr. Shoji Takeuchi

Microfluidic technology for 3D tissue construction

Thursday 6th July 2017 at 10h45 am

Institut de Biologie de Lille, Lecture hall
1, rue du Professeur Calmette
59021, LILLE

After receiving a B.E., M.E. and Ph.D. in Mechanical Engineering from the University of Tokyo, Japan, in 1995, 1977, and 2000, respectively, Shoji joined the faculty. He is Professor in the Institute of Industrial Science at the University of Tokyo and Director of the Collaborative Research Center for Bio/Nano Hybrid Process at that institution. He is also a Visiting Professor, iCeMs, at Kyoto University

Research Interests: Shoji studies biohybrid systems, tissue engineering, artificial cells/lipid bilayer membranes, and MEMS/microfluidic devices. His group focuses on the design and fabrication of bio-hybrid systems that combine bio-functional materials with micro/nano devices. He has developed in vivo sensors for physiologic monitoring and micro neural electrodes that can be used as the neural interfaces between living organs and external monitors.

Professional Activities and Awards: Shoji has authored more than 140 peer-reviewed publications, filed over 70 patents, and served on technical program committees for numerous conferences. He has been recognized with many honors including the MEXT Young Scientists’ Prize in 2008, the JSP prize in 2010, and the ACS Analytical Chemistry Young Innovator Award in 2015.

A selection by Shoji that best represent his areas of research:

Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes
Koki Kamiya, Ryuji Kawano, Toshihisa Osaki, Kazunari Akiyoshi, and Shoji Takeuchi
Nature Chemistry, vol. 8, pp. 881-889, 2016

Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6
Shigenori Miura, Koji Sato, Midori Kato-Negishi, Tetsuhiko Teshima and Shoji Takeuchi
Nature Communications, vol. 6, 8871, 2015

Metre-long cell-laden microfibres exhibit tissue morphologies and functions
Hiroaki Onoe, Teru Okitsu, Akane Itou, Midori Kato-Negishi, Riho Gojo, Daisuke Kiriya, Koji Sato, Shigenori Mirua, Shintaroh Iwanaga, Kaori Kuribayashi-Shigetomi, Yukiko Matsunaga, Yuto Shimoyama, and Shoji Takeuchi
Nature Materials, vol.12, pp. 584-590, 2013

Long-term in vivo glucose monitoring using fluorescent hydrogel fibers
Yun Jung Heo, Hideaki Shibata, Teru Okitsu, Tetsuro Kawanishi, and Shoji Takeuchi
Proc. Natl. Acad. Sci. USA, vol. 108(33), pp. 13399-13403, 2011

Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors
Nobuo Misawaa, Hidefumi Mitsunob, Ryohei Kanzakic, and Shoji Takeuchi
Proc. Natl. Acad. Sci. USA, vol. 107(35), pp. 15340-15344, 2010

Trap-and-Release Integrated Microfluidic System for Dynamic Microarray Applications
W-H. Tan and Shoji Takeuchi
Proc. Natl. Acad. Sci. USA, vol. 104, no. 4, pp. 1146-1151, 2007

Merci de confirmer votre participation par mail au plus tard le vendredi 30 juin 2017 avec vos Nom, Prénom, Affiliation à l’adresse suivante veronique.labbe@lille.limms.fr

Séminaire Fédération de Recherche Transport Terrestre et Mobilité

Dans le cadre de la Fédération de Recherche Transport Terrestre & Mobilité (TTM), regroupant les quatre laboratoires de recherche : IEMN, CRIStAL, LML et LAMIH.

__________________________________________________________________________________________________

Jeudi 29 juin 2017 à partir de 09h00 à l’IEMN Valenciennes
Campus de l’Université de Valenciennes et du Hainaut Cambrésis

________________________________________________________________

Programme de la journée

  • 8h30 Accueil Café
  • 9h Présentation de la Fédération de Recherche par Eric MARKIEWICZ,
  • 9h30 Exposés des thèmes scientifiques 1 à 3 :
  • 9h30 Thème 1 – Contrôle Aérodynamique par Jean-Philippe LAVAL – LML
  • 10h Thème 2 – Systèmes embarqués pour le diagnostic en ligne et la maintenance prédictive par Michael BOCQUET – IEMN
  • 10h30 Thème 3 – Réseaux de capteurs, communications embarquées et mobilité par Smail NIAR – LAMIH
  • 11h00 Visites de plateformes : LAMIH et DOAE de l’IEMN
  • 12h15 Déjeuner
  • 13h30 Visites de plateformes : LAMIH et DOAE de l’IEMN
  • 14h30 Exposés des thèmes scientifiques 4 à 7 :
  • 14h30 Thème 4 – Diagnostic et suivi en service de l’état de santé des matériaux et structures par intégration de capteurs
    par Farouk BENMEDDOUR – IEMN
  • 15h Thème 5 – Nouvelles méthodes d’exploitation des données expérimentales en Big Data et analyse d’image
    par Maxence BIGERELLE- LAMIH
  • 15h30 pause Café
  • 15h45 Thème 6 – Interaction Homme-Machine par Christophe KOLSKI – LAMIH
  • 16h15 Thème 7 – Optimisation robuste pour la stabilité dynamique de modèles de grande taille représentatifs de systèmes mécaniques frottant par Thierry TISON – LAMIH
  • 16h45 Remise de prix aux lauréats de l’appel à candidature 2017
  • 17h30 Fin du séminaire

>>  Cliquer ici pour vous inscrire

CNRS – Momentum 2017 : Appel à projets 2017 (dépot du projet avant le 19 juin)

 

 

Le CNRS lance un appel à projets visant à permettre à de talentueux jeunes scientifiques indépendants d’imaginer et de mener à bien un projet innovant au sein d’un laboratoire du CNRS. En développant leurs propres projets, les lauréats du CNRS-Momentum contribueront à étoffer la recherche des unités qui les accueilleront.

Cet appel est ouvert, sans condition de nationalité, aux chercheurs titulaires du CNRS et aux non permanents, ayant soutenu leur doctorat (ou équivalent) depuis moins de 8 ans (doctorat après le 31/10/2009).

En 2017, le programme CNRS-Momentum soutiendra des projets dans les domaines émergents et transdisciplinaires suivants (voir ci-dessous):

  1. Etude des cycles du carbone: des bio-pompes à l’économie circulaire – en savoir plus
  2. Traitement de l’information par le cerveau: déchiffrage du code neuronal – en savoir plus
  3. Stabilité et plasticité des Systèmes Complexes – en savoir plus
  4. Inspiration et mimétisme – en savoir plus
  5. Surfaces et interfaces – en savoir plus
  6. Comportement humain, sur le plan collectif et social – en savoir plus
  7. Sciences participatives: modèles, méthodes et outils – en savoir plus
  8. Sécurité des données et transparence des algorithmes – en savoir plus
  9. Nouvelles frontières de l’apprentissage automatique dans le domaine de l’intelligence artificielle – en savoir plus
  10. Réseaux intelligents – en savoir plus
  11. Modélisation du vivant – en savoir plus
  12. Matériaux multifonctionnels : de l’échelle nanométrique à la description multi-échelle – en savoir plus
  13. Calculs et simulations quantiques – en savoir plus
Sélection

Les critères de sélection seront basés sur la qualité du candidat, ainsi que sur l’originalité et la pertinence de son projet par rapport aux thèmes choisis. Le choix des propositions reviendra au college de direction du CNRS, présidé par Alain Fuchs, Président du CNRS.
La sélection s’effectuera en deux étapes: une présélection en octobre 2017, suivie d’entretiens des candidats présélectionnés en novembre 2017. La liste finale des lauréats sera établie courant novembre pour un début de financement en janvier 2018.

Financement

La bourse CNRS-Momentum sera allouée pour une période de 3 ans.

  • Financements équipements et fonctionnements à hauteur de 60.000 € maximum par an
  • Deux ans de salaire pour un post-doctorant ou un an de salaire pour un technicien
  • Trois ans de salaire pour les lauréats non titulaires

Le programme CNRS-Momentum n’est pas accessible aux jeunes chercheurs titulaires d’une bourse de recherche similaire (ATIP-Avenir, ANR JCJC ou bourse ERC – Starting/Consolidator)

Le formulaire de candidature doit être complété en ligne et le modèle de projet doit être téléchargé.

Le projet scientifique (rédigé en français ou en anglais) ne doit pas excéder 7 pages (y compris le CV du porteur, les schémas et références). Les propositions, en format pdf, doivent être adressées à cnrs-momentum@cnrs-dir.fr

Date limite de soumission des projets: 19 juin 2017 à 12:00 (heure de Paris)

Pour tout complément d’information, merci de contacter cnrs-momentum@cnrs-dir.fr

A magnetoelectric random access memory cell based on the stress-mediated magnetoelectric effect that promises extremely low bit-reading and low bit-writing energies.

From the Journal: Applied Physics Letters By AIP News Staff

WASHINGTON, D.C., May 30, 2017 — Today’s computers provide storage of tremendous quantities of information with extremely large data densities, but writing and retrieving this information expends a lot of energy. More than 99 percent of the consumed power of information storage and processing is wasted in the form of heat, a big headache that still has not abated.

A team of researchers from France and Russia has now developed a magnetoelectric random access memory (MELRAM) cell that has the potential to increase power efficiency, and thereby decrease heat waste, by orders of magnitude for read operations at room temperature. The research could aid production of devices such as instant-on laptops, close-to-zero-consumption flash drives, and data storage centers that require much less air conditioning. The research team reported their findings this week in Applied Physics Letters, by AIP Publishing.

Billions of transistors can now be etched onto single chips in a space the size of a dime, but at some point, increasing this number for even better performance using the same space will not be possible. The sheer density of these nanoscopic transistors translates into more unwanted heat along with quantum-level interactions that must now be addressed.

Over the last several years, research has ramped up to explore the magnetic properties of electrons in a phenomenon called the magnetoelectric effect. This effect, often of interest in the field of research known as spintronics, takes advantage of an electron’s spin, instead of its charge. Spins can potentially be manipulated at smaller size scales using far less energy.

Most efforts have focused on reducing the energy of the write operations in magnetic memories, since these operations typically use more energy than read operations. In 2010, the same French and Russian team showed that a combination of magnetoelastic and piezoelectric materials in a magnetoelectric memory cell could allow a 100-fold reduction of the energy needed for the writing process. In the researchers’ latest paper, they show that the same magnetoelectric principle also can be used for read operations with extra-low energy consumption.

“We focused on read operations in this paper because the potential for the writing energy to be very low in magnetoelectric systems means that the energy output will now be higher for read operations,” said Nicolas Tiercelin, co-author of the paper and a research scientist from the Centre national de la recherche scientifique (CNRS) who is conducting research at the Institute of Electronics, Microelectronics and Nanotechnology in Lille, France.

The core of the researchers’ MELRAM memory cell is based on combining the properties of two types of materials by coupling them mechanically. Magnetic alloys — one based on a combination of terbium-cobalt and the other based on iron and cobalt — with thicknesses of a few nanometers are stacked on top of one another. The alloys form a magnetoelastic nanocomposite material whose magnetic spins react to mechanical stress.

These alloys are then placed on a piezoelectric substrate, which consists of relaxor ferroelectrics, exotic materials that change their shape or dimensions when they are exposed to an electric field.

“Together, these materials constitute multiferroic heterostructures in which the control of the magnetic properties is made possible by the application of an electric voltage,” Tiercelin said.

“The nanocomposite multilayer provides strong magnetoelectric interaction at room temperature,” said Vladimir Preobrazhensky, another co-author of the paper and research director at the Wave Research Center, Prokhorov General Physics Institute of the Russian Academy of Sciences in Moscow. “This interaction is the basic mechanism for control of magnetic states by the electric field. This feature of the magnetoelectric memory is the origin of its extra-low power consumption.”

This research was carried out within the scope of the International Associated Laboratory on Critical & Supercritical phenomena in Functional Electronics, Acoustics & Fluidics – LIA LICS.

_______________________________________________________________

Article title:
Appl. Phys. Lett. 110, 222401 (2017); http://doi.org/10.1063/1.4983717

Alexey Klimov,1,2,3 – Nicolas Tiercelin,2 – Yannick Dusch,2 – Stefano Giordano,2  – Theo Mathurin,2 – Philippe Pernod,2 – Vladimir Preobrazhensky,2,4 – Anton Churbanov,1,5 – Sergei Nikitov,1,5

ABSTRACT

MELRAM cell and the electric scheme for the magnetic state identification

Magnetic memory cells associated with the stress-mediated magnetoelectric effect promise extremely low bit-writing energies. Most investigations have focused on the process of writing information in memory cells, and very few on readout schemes. The usual assumption is that the readout will be achieved using magnetoresistive structures such as Giant Magneto-Resistive stacks or Magnetic Tunnel Junctions. Since the writing energy is very low in the magnetoelectric systems, the readout energy using magnetoresistive approaches becomes non negligible. Incidentally, the magneto-electric interaction itself contains the potentiality of the readout of the information encoded in the magnetic subsystem. In this letter, the principle of magnetoelectric readout of the information by an electric field in a composite multiferroic heterostructure is considered theoretically and demonstrated experimentally using [N×(TbCo2/FeCo)]/[Pb(Mg1/3Nb2/3)O3](1x)[PbTiO3]x stress-mediated ME heterostructures.

4ème édition des Journées SCOPe – 22 & 23 juin 2017 – IEMN LCI


22 et 23 juin – IEMN – Amphithéâtre LCI – Villeneuve d’Ascq

L’objectif de ces journées est de réunir au niveau national les acteurs français et francophones impliqués dans la recherche sur le silicium et les semi-conducteurs/oxydes poreux et leurs applications.

Cette 4ème édition des journées SCOPe sera l’occasion pour notre communauté de partager nos dernières avancées dans le domaine et de promouvoir la jeune génération.

Les doctorants et post-doctorants seront prioritaires pour les présentations orales.

Thèmatiques abordées :

  • Elaboration, techniques de fabrication, structures
  • Luminescence et photonique
  • Microélectronique
  • Systèmes et intégration
  • Coatings fonctionnels
  • Capteurs
  • Photovoltaïque
  • Matériaux d’électrodes, énergie, conversion, stockage
  • Imagerie médicale, thérapie

PRESENTATION


Un intérêt nouveau pour les semi-conducteurs poreux a émergé dans la communauté scientifique dans les années 90, notamment grâce à la découverte de la photoluminescence du Si poreux. Les procédés électrochimiques sont devenus des méthodes phares de nano-structuration de la plupart des semi-conducteurs (Si, GaAs, InP, etc…) et ont permis la génération de réseaux poreux auto-ordonnés (Al2O3, TiO2, etc…). Ils ont dès lors été largement étudiés car ils ont ouvert des perspectives pour la fabrication de nano-objets à propriétés nouvelles, en particulier électroniques et optiques. Par la suite, les domaines d’applications potentielles de ces structures anodiques poreuses, n’ont cessé de croître et d’évoluer.  En particulier, le Si poreux dotés de fonctionnalités variées a révélé un potentiel considérable pour des applications en opto- et microélectronique, systèmes, capteurs, matériaux pour l’énergie, ainsi que pour la nanomédecine.

Aujourd’hui, le silicium et les semi-conducteurs poreux sont au cœur des intérêts scientifiques de nombreuses équipes de recherche dans le monde entier, attirant l’attention de chimistes, de physiciens, de biologistes et de médecins.

COMITE SCIENTIFIQUE


  • BASTIDE Stéphane – ICMPE-CMTR – Université Paris-Est
  • BILLOUÉ Jérôme – GREMAN – Université de Tours
  • COFFINIER Yannick – IEMN – Université de Lille 1
  • CUNIN Frédérique – Institut Charles Gerhardt Montpellier – Université de Montpellier
  • DJENIZIAN Thierry – MADIREL – Aix Marseille Université
  • GAUTIER Gaël – GREMAN – Université de Tours
  • SANTINACCI Lionel – CiNaM – Aix Marseille Université

COMITE D’ORGANISATION


  • COFFINIER Yannick – IEMN – Université de Lille 1HOSU
  • Ioana Silvia  – IEMN – Université de LilleHAMDI
  • Abderrahmane  – IEMN – Université de Lille
  • BILLOUÉ Jérôme – GREMAN – Université de Tours
  • CUNIN Frédérique – Institut Charles Gerhardt Montpellier – Université de Montpellier
  • GAUTIER Gaël – GREMAN – Université de Tours

Pour plus de renseignement : yannick.coffinier@univ-lille1.fr
ou sur le site :scope2017.sciencesconf.org

Journées SCOPe


22 et 23 juin – IEMN – Amphithéâtre LCI – Villeneuve d’Ascq

L’objectif de ces journées est de réunir au niveau national les acteurs français et francophones impliqués dans la recherche sur le silicium et les semi-conducteurs/oxydes poreux et leurs applications.

Cette 4ème édition des journées SCOPe sera l’occasion pour notre communauté de partager nos dernières avancées dans le domaine et de promouvoir la jeune génération.

Les doctorants et post-doctorants seront prioritaires pour les présentations orales.

Thèmatiques abordées :

  • Elaboration, techniques de fabrication, structures
  • Luminescence et photonique
  • Microélectronique
  • Systèmes et intégration
  • Coatings fonctionnels
  • Capteurs
  • Photovoltaïque
  • Matériaux d’électrodes, énergie, conversion, stockage
  • Imagerie médicale, thérapie

PRESENTATION


Un intérêt nouveau pour les semi-conducteurs poreux a émergé dans la communauté scientifique dans les années 90, notamment grâce à la découverte de la photoluminescence du Si poreux. Les procédés électrochimiques sont devenus des méthodes phares de nano-structuration de la plupart des semi-conducteurs (Si, GaAs, InP, etc…) et ont permis la génération de réseaux poreux auto-ordonnés (Al2O3, TiO2, etc…). Ils ont dès lors été largement étudiés car ils ont ouvert des perspectives pour la fabrication de nano-objets à propriétés nouvelles, en particulier électroniques et optiques. Par la suite, les domaines d’applications potentielles de ces structures anodiques poreuses, n’ont cessé de croître et d’évoluer.  En particulier, le Si poreux dotés de fonctionnalités variées a révélé un potentiel considérable pour des applications en opto- et microélectronique, systèmes, capteurs, matériaux pour l’énergie, ainsi que pour la nanomédecine.

Aujourd’hui, le silicium et les semi-conducteurs poreux sont au cœur des intérêts scientifiques de nombreuses équipes de recherche dans le monde entier, attirant l’attention de chimistes, de physiciens, de biologistes et de médecins.

COMITE SCIENTIFIQUE


  • BASTIDE Stéphane – ICMPE-CMTR – Université Paris-Est
  • BILLOUÉ Jérôme – GREMAN – Université de Tours
  • COFFINIER Yannick – IEMN – Université de Lille 1
  • CUNIN Frédérique – Institut Charles Gerhardt Montpellier – Université de Montpellier
  • DJENIZIAN Thierry – MADIREL – Aix Marseille Université
  • GAUTIER Gaël – GREMAN – Université de Tours
  • SANTINACCI Lionel – CiNaM – Aix Marseille Université

COMITE D’ORGANISATION


  • COFFINIER Yannick – IEMN – Université de Lille 1HOSU
  • Ioana Silvia  – IEMN – Université de LilleHAMDI
  • Abderrahmane  – IEMN – Université de Lille
  • BILLOUÉ Jérôme – GREMAN – Université de Tours
  • CUNIN Frédérique – Institut Charles Gerhardt Montpellier – Université de Montpellier
  • GAUTIER Gaël – GREMAN – Université de Tours

Pour plus de renseignement : yannick.coffinier@univ-lille1.fr
ou sur le site :scope2017.sciencesconf.org

Une étude dans le cadre d’une collaboration entre l’IEMN et le Fraunhofer Institute for Photonic Microsystems

fait la couverture du journal Analytical Methods (RSC)

(c) IEMN-ECM – Création graphique : Anne Callewaert – Duchêne

A user-friendly guide to the optimum ultraviolet photolithographic exposure and greyscale dose of SU-8 photoresist on common MEMS, microsystems, and microelectronics coatings and materials

Fraunhofer Institute for Photonic Microsystems, Maria-Reiche-Str. 2, 01109 Dresden, Germany
matthieu.gaudet@ipms.fraunhofer.de

Abstract :

We provide here a user-friendly guide to find the optimum i-line (365 nm) photolithographic exposure dose of an arbitrary thickness of SU-8 on various substrate materials and thin film coatings used in MEMS, microsystems and microelectronics technologies: semiconductors, 2D materials (graphene and MoS2) plastics, glass, metals and ceramics. By considering the variation of the absorption coefficient of SU-8 to ultraviolet light and the effect of partial reflections during the photolithography, we develop an analytical model for the exposure of SU-8. The critical exposure dose of the SU-8 enables a calculation of the exact greyscale photolithographic exposure time of the photoresist which optimizes the fabrication of microsystems structures (microcantilevers, microbridges, microchannels…) of a desired thickness. The optimum exposure doses are presented in both graphical and tabular format to enable user-friendly information based on the desired SU-8 thickness, the desired greyscale thickness and the specific wafer or coating used for the deposition. Interestingly, in the context of grey-scale lithography the model predicts that the surface reflectivity has a major impact on the resulting membrane thickness for a fixed dose and reducing the SU-8 thickness – on a highly reflecting surface a thicker membrane is obtained, on a low reflecting surface a thinner membrane in obtained when reducing the SU-8 thickness. The result is a useful guide for designers working with SU-8 in the context of many fabrication processes, e.g. MEMS, laboratory on a chip, microfluidics, microsystems, microengineering, micromoulding, and flexible electronics etc. – where a myriad of coatings and wafers are now used.

Anal. Methods, 2017,9, 2495-2504
DOI: 10.1039/C7AY00564D, Paper

IEMN : Romain Peretti reçoit une chaire d’excellence internationale

La Région Hauts-de-France et le Fond Européen de Développement Régional ont attribués une chaire d’excellence internationale à Romain Peretti, chercheur à l’IEMN, pour son projet  » TeraHertz Optical Traping of Viruses  » (THOTroV). Grâce à cette chaire, Romain Peretti a pour ambition de développer une technique de piégeage optique dans une nouvelle plage de longueur d’onde : le TeraHertz, afin de l’appliquer à des objets aussi petits que des virus.

Séminaire : Terahertz sources based on quantum cascade heterostructures – Juraj Darmo

In the framework of MNO department, IEMN is pleased to announce the seminar of Dr. Juraj Darmo

Date : thursday 4 mai at 15h00
Location : Salle du Conseil – IEMN-LCI

Pr. Juraj Darmo : Photonics Institute, Vienna University of Technology Gusshausstr. 27-29, 1040 Vienna (Austria)

The state-of-the-art of terahertz (THz) sources based on quantum cascade heterostructures will be reviewed from the viewpoint of short pulse generation. There are two principal applications of the concept of quantum cascade – for the emission and for the detection of terahertz waves. On the emitter’s side, THz quantum cascade lasers (QCLs) are increasingly exploited for sensing and imaging applications. Today QCLs span a frequency range from 1.8THz to 5 THz with record peak output powers of 1 W and CW single-mode average powers in the 100s mW range. Recently, a concept of heterogeneous QCL active region has been successfully implemented leading to broadband emission over one octave and even to frequency comb operation with a 600 GHz bandwidth. Such active medium can be used for the generation of short (bandwidth limited) pulses.

In this work we have exploited broadband QCLs active regions to demonstrate an alternative route to boost the performance of time-domain spectroscopy (TDS), the main spectroscopic technique used in the THz frequency range. The available broad THz QCL gain is used to amplify a weak broadband THz spectrum generated through optical-to-THz low-efficiency conversion. In the 2.0-3.0 THz window this approach leads to an increase of SNR by two orders of magnitude compared to a standard TDS system. Moreover we demonstrate the generation of amplified pulses as short as 2.5 ps and analyse hurdles preventing us from exploiting all the gain bandwidth available from the broadband THz QCL gain medium. The presentation will end with an outlook on the future developments of the presented technology.