Articles

Conference : “International Workshop on Sound-enabled Nanotechnologies » (IWSENT)

The European projects SAWtrain and Phenomen

November 26-29th 2018

Valencia (Spain)

Abstract :

IWSENT is a joint effort by the European-funded projects SAWtrain and PHENOMEN aiming at gathering leading scientists from all over the world working in the emerging field of high frequency vibrations in semiconductor and related materials, with special focus on surface acoustic waves (SAWs), opto-mechanics, high-frequency phonons, and their applications. The dynamic modulation of semiconductor structures by high frequency vibrations provides a powerful tool for the control of the materials properties required for novel functionalities in nanophotonics, nanoelectronics, and quantum information processing. Of special interest are SAWs: these vibrations with GHz frequencies and micrometer-size wavelengths can be generated on a semiconductor chip with standard integrated circuit technology. The combination of SAWs with nanostructures has developed into new interdisciplinary fields ranging from the control of chemical reactions to advanced acousto-optical structures and to GHz quantum acoustics. Moreover, the potential of combined phononics, photonics and radio-frequency (RF) electronic signals allows one to lay the foundations of a new information technology. In particular, the controlled propagation of phonons could lead to low power components, with phonons as information tokens, by themselves or coupled to photons.

IWSENT constitutes an excellent opportunity to start the discussion on phonon-based circuits as well as SAW-based technologies, seeking to explore synergies and to boost the research in the field in the near future.

brochure_IWSENT2018

http://iwsent.sawtrain.eu/

        

Conference : Acoustofluidics 2018

Conference Chair Michaël Baudoin – Chair Professor

29-31 August, 2018

IEMN – Villeneuve d’Ascq

Abstract :

This annual meeting is returning to Europe in 2018.This focused meeting is dedicated to exploring the science, engineering, and use of micro- to nanoscale acoustofluidics.

In particular the scope of the conference covers:

  • Acoustical tweezers and acoustophoresis
  • Acoustic streaming and radiation pressure analysis and experimentation
  • Liquids, bubbles, particles and cells manipulation with acoustics
  • Integrated acoustofluidics devices for energy, chemical, biological, and medical applications
  • Fluid interface manipulation using ultrasound, including atomization, droplet generation, and thin films
  • Transducers designs for micro/nano acoustofluidics, including new fabrication methods and ideas

Register

https://cbmsociety.org/conferences/acoustofluidics18/

Sponsors

                   

Conference : Prototype of Terahertz Communications at 300 GHz: Devices, Packages

HO-JIN-SONG_Pohang_University_of_Science_and_Technology-POSTECHDr. HO-JIN SONG, Pohang University of Science and Technology (POSTECH), Korea

Tuesday 6 April at 14h00

Anfiteather – IEMN-LCI Institut d’Electronique, de Microélectronique et de Nanotechnologie U.M.R C.N.R.S 8520 – Laboratoire Central – Cité Scientifique – Avenue Poincaré – CS 60069 – 59652 VILLENEUVE D’ASCQ CEDEX

Abstract :

Thanks to the significant advances made in wireless communications technologies over the last couple of decades, radio communications systems are now being used to deliver not only simple text or voice messages but also multimedia information and real-time streaming of video through the internet anytime and anywhere. However, the steady progress cannot fulfill the recent needs from both industry and end-users. Many leaders of industry are expecting new applications, such as virtual reality, a tactile internet, connected cars, remote surgery, and the internet of everything, that would cause a paradigm shift in key industries. The requirements for such applications include higher throughputs to deliver or collect huge amounts of information from all intelligent things, low latency to maintain mission critical even through wireless networks, and the capability of massive connectivity. The most straightforward way to satisfy these requirements is to provide more spectral bandwidth, which is the most fundamental resource in wireless communications. In recent discussions of the 5G system, there has been a strong consensus among the parties to deploy millimeter-wave radio access technology, which is expected to offer an order of magnitude larger bandwidth at minimum. For further future applications, such as terabit connectivity or terabit wireless, even higher frequencies, in particular those above 275 GHz, which have never been discussed for any commercial use yet, are attracting increasing interest because of the huge spectral area. The available bandwidth in the THz region is definitely much wider than the entire spectral resources utilized for all wireless systems on this planet.
Recent progress in semiconductor devices on compound semiconductor or silicon substrates has made it possible to produce more power and receive a signal with less noise at THz frequencies. Various integrated circuits for the THz radio front-end functional blocks, including power and low-noise amplifiers, modulators and demodulators, and oscillators, have been demonstrated in the last decade. In the first experimental demonstration conducted in 2004, bulky instruments originally developed for THz spectroscopy were used to transmit pulsed THz signals carrying a 7-kHz bandwidth audio signal across a short free space. However, recently, there have been several successful demonstrations of multi-Gbps data transmissions at THz frequencies with state-of-the art devices and components.

In this talk, the first prototype of a THz wireless communications system designed under the ‘touch-and-go’ scenario will be presented. I clarify the concept of the KIOSK data downloading system, cover some considerations in this work, and present a brief link-budget plan. We will then overview technologies for implementing THz components operating at 300 GHz and their performance, followed by preliminary investigation of the channel responses and the experimental demonstration results.

Pohang-University-of-Science-and-Technology_logo

Radar 2014 – Session historique d’ouverture

La Conférence Internationale sur le Radar, qui réunit tous les cinq ans en France les experts mondiaux de la discipline, est organisée cette année à Lille, du 13 au 17 octobre 2014.

A cette occasion est organisée une « session historique » d’ouverture,
le 13 octobre 2014 au Palais de congès de Lille de 18h à 19h30
(entrée libre et gratuite) :

« Le cinquantième anniversaire de l’application des Ondes Acoustiques de Surface à la compression d’impulsion dans le radar moderne »

Avec M. LECONTE, Y. BLANCHARD, M-H. CARPENTIER, P. HARTEMANN, J-C. GUILLEROT, G. DESODT et P-E. MOUNIER-KUHN

Sept experts et historiens du Radar, dont certains furent acteurs de la période évoquée, nous livreront autour d’une Table Ronde leurs souvenirs et leurs commentaires sur une innovation majeure qui a ouvert la porte au développement du radar moderne. Ces témoins ou acteurs de l’époque, partageront leurs points de vue sur ce moment charnière de l’histoire du radar

L’adoption de la compression d’impulsion a marqué un tournant important de l’histoire du radar moderne. Elle a mis fin à la course aux puissances crête qui prévalait jusque là, et a été la première application pratique des nouvelles théories de la détection. Mais les difficultés technologiques à sa mise en œuvre l’ont retardée jusqu’au début des années 60.

Comme souvent dans le processus d’innovation, la solution est venue du rapprochement de deux domaines qui avaient a priori peu de choses en commun : la détection électromagnétique, et l’analyse ultra-sonore des matériaux. Les composants à onde acoustique de surface qui en ont résulté en 1965 ont radicalement modifié l’architecture du récepteur radar, et donné naissance à un nouveau secteur industriel.

Mais cette innovation a été aussi éphémère que décisive : à peine dix ans plus tard, à partir de 1975,  les progrès du traitement numérique l’ont rendue progressivement caduque. Les « SAW » n’ont été finalement qu’une étape de transition dans la mutation du radar classique vers le radar moderne. Mais ils ont représenté le stade ultime et le plus élaboré du traitement analogique du signal.