Les mardis de l’Innovation : L’enjeu global du stockage de l’énergie

pour l’avenir de l’internet des objets, des énergies alternatives et de la mobilité.
Christophe LETHIEN, Institut d’Electronique, de Microélectronique et de Nanotechnologie, Université de Lille, CNRS.
Les Mardis de l’innovation. 20 Mars 2018.

> Visionnez la conférence sur vimeo

 Véritable encyclopédie vivante de l’innovation à travers le monde, destinée aux acteurs de l’innovation. Les Mardis de l’Innovation sont des cours/conférences en format ouvert portant sur la culture de l’innovation et sa mise en œuvre entrepreneuriale. Depuis dix ans, 270 cours/conférences, plus de 600 professionnels formés, plus de 10 000 auditeurs libres, 200 témoignages d’entreprises parmi les plus innovantes au monde.

 

IEMN : CS Industry Award

Rewarding excellence, innovation and success

La compagnie ALLOS semiconductors s’est vu décerner un CS Award portant sur des travaux effectués en étroite collaboration avec l’équipe de recherche du Dr Farid Medjdoub de l‘Institut d’électronique, de microélectronique et de nanotechnologie. Les derniers résultats de l’IEMN démontrent notamment une tension de claquage de plus de 1400 V pour les mesures verticales et latérales sur le prochain produit d’ALLOS, l’épiwafer GaN-on-Si pour les appareils de 1200 V.

Un composant térahertz pour manipuler les réseaux sans fil mille fois plus rapides

L’explosion des réseaux sans fil pousse les technologies actuelles dans leurs retranchements. Si les fréquences térahertz offrent les débits nécessaires pour y pallier, elles manquent encore de composants adaptés. Des chercheurs de l’IEMN et de la Brown University de Providence ont donc conçu et testé le premier système mux/demux fonctionnant à ces fréquences. Cet élément permet de « zapper » entre différents flux et d’atteindre un débit mille fois supérieur au Wi-Fi. Ces travaux sont publiés dans la revue Nature Communications.

Les réseaux sans fil actuels utilisent des micro-ondes de la gamme hyperfréquence, comprises entre 1 et 100 GHz. Comme les vitesses de transmission des données dépasseront dans quelques années les capacités de nos réseaux, le monde de la recherche se penche désormais sur les ondes térahertz1. Grâce à leurs fréquences plus élevées que les micro-ondes, elles atteignent de meilleurs débits. Ces ondes nécessitent cependant d’adapter et de rendre compatible toute l’électronique consacrée aux télécommunications. Des chercheurs de l’Institut d’électronique, de microélectronique et de nanotechnologie (IEMN, CNRS/Université Lille 1/ISEN Lille/Université de Valenciennes/École Centrale de Lille) et de l’université américaine Brown ont mis au point le premier système de multiplexage et de démultiplexage térahertz.

Grâce à un mux/demux, plusieurs signaux transitent à travers un seul canal de communication et se séparent ensuite à volonté. Ce composant essentiel permet par exemple de transporter plusieurs chaînes de télévision à la fois, ou de connecter des centaines d’utilisateurs sur un même réseau Wi-Fi. Les chercheurs ont ici utilisé deux plaques métalliques parallèles afin de guider les ondes THz. Une fente coupée laisse une partie des ondes s’échapper avec un angle lié à leur fréquence, ce qui les isole et les trie. Le débit total de données démultiplexées a ainsi pu atteindre 50 Gbit/s dans la bande 300 GHz, soit environ 1000 fois celui d’un réseau Wi-Fi standard (54 Mbit/s).

Ces travaux ont été réalisés dans le cadre de la fondation I-site Université de Lille Nord Europe, au sein du Hub « Human-Friendly Digital World ». Ils ont été soutenus par l’ANR, l’Université de Lille, l’IEMN, le CNRS, RENATECH, PIA Equipex : FLUX (Fibres optiques pour les hauts flux), le projet ExCELSiOR, le conseil régional Nord-Pas de Calais, le FEDER et le CPER « Photonics for Society ».

1 1 GHz = 109 hertz ; 1 THz = 1 000 GHz

© IEMN
Démultiplexeur orientant dans l’espace le signal télécom THz (bande 300 GHz)

Références :

Frequency-division multiplexer and demultiplexer for terahertz wireless links
J. Ma, N. J. Karl, S. Bretin, G. Ducournau & D. M. Mittleman
Nature Communications 8, Article number: 729 (2017)
DOI :10.1038/s41467-017-00877-x
https://www.nature.com/articles/s41467-017-00877-x
Contact chercheur :
Guillaume Ducournau – IEMN

Contact communication INSIS :
insis.communication@cnrs.fr

A magnetoelectric random access memory cell based on the stress-mediated magnetoelectric effect that promises extremely low bit-reading and low bit-writing energies.

From the Journal: Applied Physics Letters By AIP News Staff

WASHINGTON, D.C., May 30, 2017 — Today’s computers provide storage of tremendous quantities of information with extremely large data densities, but writing and retrieving this information expends a lot of energy. More than 99 percent of the consumed power of information storage and processing is wasted in the form of heat, a big headache that still has not abated.

A team of researchers from France and Russia has now developed a magnetoelectric random access memory (MELRAM) cell that has the potential to increase power efficiency, and thereby decrease heat waste, by orders of magnitude for read operations at room temperature. The research could aid production of devices such as instant-on laptops, close-to-zero-consumption flash drives, and data storage centers that require much less air conditioning. The research team reported their findings this week in Applied Physics Letters, by AIP Publishing.

Billions of transistors can now be etched onto single chips in a space the size of a dime, but at some point, increasing this number for even better performance using the same space will not be possible. The sheer density of these nanoscopic transistors translates into more unwanted heat along with quantum-level interactions that must now be addressed.

Over the last several years, research has ramped up to explore the magnetic properties of electrons in a phenomenon called the magnetoelectric effect. This effect, often of interest in the field of research known as spintronics, takes advantage of an electron’s spin, instead of its charge. Spins can potentially be manipulated at smaller size scales using far less energy.

Most efforts have focused on reducing the energy of the write operations in magnetic memories, since these operations typically use more energy than read operations. In 2010, the same French and Russian team showed that a combination of magnetoelastic and piezoelectric materials in a magnetoelectric memory cell could allow a 100-fold reduction of the energy needed for the writing process. In the researchers’ latest paper, they show that the same magnetoelectric principle also can be used for read operations with extra-low energy consumption.

“We focused on read operations in this paper because the potential for the writing energy to be very low in magnetoelectric systems means that the energy output will now be higher for read operations,” said Nicolas Tiercelin, co-author of the paper and a research scientist from the Centre national de la recherche scientifique (CNRS) who is conducting research at the Institute of Electronics, Microelectronics and Nanotechnology in Lille, France.

The core of the researchers’ MELRAM memory cell is based on combining the properties of two types of materials by coupling them mechanically. Magnetic alloys — one based on a combination of terbium-cobalt and the other based on iron and cobalt — with thicknesses of a few nanometers are stacked on top of one another. The alloys form a magnetoelastic nanocomposite material whose magnetic spins react to mechanical stress.

These alloys are then placed on a piezoelectric substrate, which consists of relaxor ferroelectrics, exotic materials that change their shape or dimensions when they are exposed to an electric field.

“Together, these materials constitute multiferroic heterostructures in which the control of the magnetic properties is made possible by the application of an electric voltage,” Tiercelin said.

“The nanocomposite multilayer provides strong magnetoelectric interaction at room temperature,” said Vladimir Preobrazhensky, another co-author of the paper and research director at the Wave Research Center, Prokhorov General Physics Institute of the Russian Academy of Sciences in Moscow. “This interaction is the basic mechanism for control of magnetic states by the electric field. This feature of the magnetoelectric memory is the origin of its extra-low power consumption.”

This research was carried out within the scope of the International Associated Laboratory on Critical & Supercritical phenomena in Functional Electronics, Acoustics & Fluidics – LIA LICS.

_______________________________________________________________

Article title:
Appl. Phys. Lett. 110, 222401 (2017); http://doi.org/10.1063/1.4983717

Alexey Klimov,1,2,3 – Nicolas Tiercelin,2 – Yannick Dusch,2 – Stefano Giordano,2  – Theo Mathurin,2 – Philippe Pernod,2 – Vladimir Preobrazhensky,2,4 – Anton Churbanov,1,5 – Sergei Nikitov,1,5

ABSTRACT

MELRAM cell and the electric scheme for the magnetic state identification

Magnetic memory cells associated with the stress-mediated magnetoelectric effect promise extremely low bit-writing energies. Most investigations have focused on the process of writing information in memory cells, and very few on readout schemes. The usual assumption is that the readout will be achieved using magnetoresistive structures such as Giant Magneto-Resistive stacks or Magnetic Tunnel Junctions. Since the writing energy is very low in the magnetoelectric systems, the readout energy using magnetoresistive approaches becomes non negligible. Incidentally, the magneto-electric interaction itself contains the potentiality of the readout of the information encoded in the magnetic subsystem. In this letter, the principle of magnetoelectric readout of the information by an electric field in a composite multiferroic heterostructure is considered theoretically and demonstrated experimentally using [N×(TbCo2/FeCo)]/[Pb(Mg1/3Nb2/3)O3](1x)[PbTiO3]x stress-mediated ME heterostructures.

Une étude dans le cadre d’une collaboration entre l’IEMN et le Fraunhofer Institute for Photonic Microsystems

fait la couverture du journal Analytical Methods (RSC)

(c) IEMN-ECM – Création graphique : Anne Callewaert – Duchêne

A user-friendly guide to the optimum ultraviolet photolithographic exposure and greyscale dose of SU-8 photoresist on common MEMS, microsystems, and microelectronics coatings and materials

Fraunhofer Institute for Photonic Microsystems, Maria-Reiche-Str. 2, 01109 Dresden, Germany
matthieu.gaudet@ipms.fraunhofer.de

Abstract :

We provide here a user-friendly guide to find the optimum i-line (365 nm) photolithographic exposure dose of an arbitrary thickness of SU-8 on various substrate materials and thin film coatings used in MEMS, microsystems and microelectronics technologies: semiconductors, 2D materials (graphene and MoS2) plastics, glass, metals and ceramics. By considering the variation of the absorption coefficient of SU-8 to ultraviolet light and the effect of partial reflections during the photolithography, we develop an analytical model for the exposure of SU-8. The critical exposure dose of the SU-8 enables a calculation of the exact greyscale photolithographic exposure time of the photoresist which optimizes the fabrication of microsystems structures (microcantilevers, microbridges, microchannels…) of a desired thickness. The optimum exposure doses are presented in both graphical and tabular format to enable user-friendly information based on the desired SU-8 thickness, the desired greyscale thickness and the specific wafer or coating used for the deposition. Interestingly, in the context of grey-scale lithography the model predicts that the surface reflectivity has a major impact on the resulting membrane thickness for a fixed dose and reducing the SU-8 thickness – on a highly reflecting surface a thicker membrane is obtained, on a low reflecting surface a thinner membrane in obtained when reducing the SU-8 thickness. The result is a useful guide for designers working with SU-8 in the context of many fabrication processes, e.g. MEMS, laboratory on a chip, microfluidics, microsystems, microengineering, micromoulding, and flexible electronics etc. – where a myriad of coatings and wafers are now used.

Anal. Methods, 2017,9, 2495-2504
DOI: 10.1039/C7AY00564D, Paper

Sputtered Titanium Carbide Thick Film for High Areal Energy on Chip Carbon-Based Micro-Supercapacitors

Manon Létiche, Kevin Brousse, Arnaud Demortière, Peihua Huang, Barbara Daffos,Sébastien Pinaud, Marc Respaud, Bruno Chaudret, Pascal Roussel, Lionel Buchaillot, Pierre Louis Taberna, Patrice Simon, and Christophe Lethien*

The areal energy density of on-chip micro-supercapacitors should be improved in order to obtain autonomous smart miniaturized sensors. To reach this goal, high surface capacitance electrode (>100 mF cm−2) has to be produced while keeping low the footprint area. For carbide-derived carbon (CDC) micro-supercapacitors, the properties of the metal carbide precursor have to be fine-tuned to fabricate thick electrodes. The ad-atoms diffusion process and atomic peening effect occurring during the titanium carbide sputtering process are shown to be the key parameters to produce low stress, highly conductive, and thick TiC films. The sputtered TiC at 10−3 mbar exhibits a high stress level, limiting the thickness of the TiC-CDC electrode to 1.5 µm with an areal capacitance that is less than 55 mF cm−2 in aqueous electrolyte. The pressure increase up to 10−2 mbar induces a clear reduction of the stress level while the layer thickness increases without any degradation of the TiC electronic conductivity. The volumetric capacitance of the TiC-CDC electrodes is equal to 350 F cm−3 regardless of the level of pressure. High values of areal capacitance (>100 mF cm−2) are achieved, whereas the TiC layer is relatively thick, which paves the way toward high-performance micro-supercapacitors.

First published: 31 March 2017
>> DOI: 10.1002/adfm.201606813

© WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

La photonique et les communications sans fil térahertz

« Les communications sans fil térahertz: état de l’art des performances et intérêt des dispositifs issus de la photonique pour le développement des démonstrateurs amont: cet article présente le rôle clé qu’a joué et que joue encore la photonique pour l’avancée dans ce domaine de recherche. Quelques développements récents effectués à l’IEMN y sont présentés »

nature_photonicsAdvances in terahertz communications accelerated by photonics

Tadao Nagatsuma, Guillaume Ducournau & Cyril C. Renaud

Nature Photonics 10, 371–379 (2016) │ Published online 31 May 2016

Abstract:

Almost 15 years have passed since the initial demonstrations of terahertz (THz) wireless communications were made using both pulsed and continuous waves. THz technologies are attracting great interest and are expected to meet the ever-increasing demand for high-capacity wireless communications. Here, we review the latest trends in THz communications research, focusing on how photonics technologies have played a key role in the development of first-age THz communication systems. We also provide a comparison with other competitive technologies, such as THz transceivers enabled by electronic devices as well as free-space lightwave communications.

Examples of THz links using photonics-based transmitters.

IEMN

Enabling technologies based on photonics and new materials for future THz communications.
 IEMN

 

 

> Consulter l’article dans son intégralité

Nanoécole Lille, on en parle …

Passionnée, Patricia Lefebvre a expliqué son métier par le concret

Passionnée, Patricia Lefebvre a expliqué son métier par le concret

 

 

Auchel : une ingénieure du CNRS compte sur la relève des élèves de Lavoisier

Susciter des vocations, des projets de carrière scientifique, parmi les élèves de terminale, première et seconde, c’était bien là l’objectif d’Alberto Da Silva, professeur de physique à Lavoisier lorsqu’il a organisé la venue de Patricia Lefebvre, ingénieure au CNRS (Centre National de la Recherche Scientifique) de l’IEMN (Institut d’Electronique, de Microélectronique et de Nanotechnologie) à l’Université de Lille 1.

 

 

Vendredi, plus de deux cents élèves ont profité de la rencontre, avec des interventions adaptées au programme de chaque niveau. Les nanotechnologies et le nanomonde, illustré par quelques petites expériences. Patricia a aussi parlé de son laboratoire, où travaillent cinq cents personnes, et de tous les métiers nécessaires à son bon fonctionnement : techniciens, opérateurs, chercheurs, ingénieurs…

« Nous avons besoin de plus en plus de compétences différentes. Plus tard, dans votre métier, on vous demandera d’être compétent là où vous êtes. On espère que vous, lycéens, prendrez la relève », souffle-t-elle.

Pour le professeur de physique, cet échange est à reconduire.

« Même si cela ne crée que quatre vocations, eh bien ce sera déjà cela. Le message que nous, professeurs, véhiculons au quotidien est très important mais qui mieux qu’une ingénieure pour parler de son métier. Il est important de multiplier les discours. D’autant plus qu’il s’agit ici d’une femme et qu’elles ne sont pas assez dans le domaine scientifique alors qu’il y a plus de filles que de garçons qui obtiennent un bac S. »

 

Publiée le 23/05/2016, La Voix du Nord

Voix du Nord

L’IEMN présent dans une interview sur la WikiRadio du CNRS

Retrouvez Les rendez-vous de l’innovation sur la Wikiradio du CNRS, la webradio participative de la recherche scientifique pour dépasser les frontières !

Dans le cadre de la 9ème édition des RUE ( http://www.rue-aef.com/sc2016/ ), salon professionnel de l’Enseignement supérieur, de la Recherche et de l’Innovation, Groupe AEF et le CNRS organisent la 2ème édition de « Start-up Connexion, Les Rencontres Investisseurs & Chercheurs-entrepreneurs ». Ce projet de rencontres vise d’une part, à valoriser, auprès du public des RUE 2016, des start-up issues de la recherche académique. Il permet, d’autre part, de soutenir des chercheurs-entrepreneurs innovants en leur offrant l’opportunité de rencontrer des investisseurs et des industriels désireux de les accompagner dans leur processus de création de valeurs.

Ecoutez le podcast (Podcast du 15 décembre 2015 à 17h00 durée: 29 minutes)



Interviews animés par Brigi
tte Perucca,
Directrice de la communication du CNRS

 

Invité : Nicolas CastoldiCNRS Dépasser les frontières

Délégué général du CNRS à la valorisation, il est en charge de trois missions :

  • l’accélération et la simplification des processus de valorisation,
  • l’affirmation d’une relation partenariale fluide et structurée dans ce domaine,
  • et une maîtrise renforcée des coûts financiers associés à l’exercice de cette mission.
    Il exerce également une mission de pilotage stratégique de la fonction juridique au sein de l’organisme.

Invité : Norbert Benamou

Président du réseau SATT et de la SATT Nord

Invité : Arnaud Devos

Directeur de recherche CNRS à l’IEMN, Arnaud Devos est Président de Menapic, une start-up issue de travaux de recherche menés par l’IEMN. Menapic a pour activités principales : – la prestation de service pour les entreprises : la mesure de propriétés mécaniques, notamment l’élasticité, à l’échelle micro et nanoscopique ; – le développement et la vente d’appareils de mesure de propriétés mécaniques à échelle micro et nanoscopique pour les industriels.

Invitée : Danielle Deruy

Directrice générale du Groupe AEF, en charge du développement. Elle organise notamment le concours Start Up connexion.

Invité : Laurent Kott

PDG de IT-translation, coach des candidats au concours start-up connexion 2016. IT-Translation est l’investisseur et le cofondateur des startups techno-numériques issues de la recherche.

Invité : Sylvain Ballandras

Président de frec|n|sys. frec’n’sys conçoit, produit et commercialise des capteurs passifs, sans-fil et identifiables évoluant exclusivement en environnements sévères. Résistants à des températures supérieures à 500°C, ils permettent de récolter toutes informations physiques: température, accélération, pression, couple…