IEMN
  • Accueil
  • Actualités
    • Newsletters de l’IEMN
    • Offres de Stages M2-Ingé
    • Les offres d’emplois
    • Toutes les actualités
  • L’Institut
    • Présentation
    • Organisation de l’institut
    • La Direction Scientifique
    • La Direction Technologique
    • La direction administrative et financière
    • Règlement intérieur
    • Nos engagements
  • La Recherche
    • Les départements scientifiques
      • Matériaux Nanostructures et Composants
      • Micro/nano et optoélectronique
      • Technologies des télécommunications et Systèmes intelligents
      • Acoustique
    • Les groupes de recherche
    • Les projets phares
  • Production Scientifique
    • Publications IEMN
    • Ressources production scientifique
  • Les plateformes
    • CMNF – Plateforme Centrale de Micro Nano Fabrication
      • Pôle Gravure et implantation
      • Pôle Analyse In Line
      • Pôle Soft Lithographie et Bio Microfluidique
      • Pôle Dépôts et épitaxie
      • Pôle Lithographie
      • Pôle Packaging
      • Staff CMNF
    • PCMP – Plateforme de Caractérisation Multi-Physique
      • Pôle Microscopie en Champ Proche (PCP)
      • Pôle Caractérisation Hyperfréquence, Optique et Photonique (CHOP)
      • Pôle Systèmes de COMmunications avancées et prototypage (SigmaCOM)
      • Pôle Caractérisation et Compatibilité ElectroMagnétique et prototypage (C2EM)
      • Staff PCMP
    • Prestations proposées par nos plateformes
  • Partenariat – Valorisation
    • Les Collaborations Académiques
    • Projets ANR
    • Principales collaborations internationales
    • Les partenariats industriels
    • Les laboratoires communs IEMN-Industrie
    • Les startups
  • La Formation à la Recherche
    • L’après-thèse
      • Faire un post-doc à l’IEMN
      • Vers le monde des entreprises et de l’industrie
      • Devenir Enseignant-Chercheur
      • Devenir Chercheur
      • Créer son entreprise à l’IEMN
      • FOCUS sur un ingénieur SATT issu de l’IEMN
    • Une thèse à l’IEMN
      • Soutenances de thèses et HDR
      • Sujets de thèses
      • Les financements
      • Les études doctorales
    • Master – Ingénieur
      • Masters ULille
        • Master Life Sciences and Technologies graduate program
        • Master Nanosciences and Nanotechnologies – Speciality ETECH
        • Master Réseaux et Télécommunications
      • Masters UPHF-INSA
        • Master Ingénierie des Systèmes embarqués et Communications Mobiles
        • Master Cyber-Défense et Sécurité de l’information
        • Master Matériaux, Contrôle, Sécurité
        • Master Ingénierie des Systèmes Images et Sons
      • Écoles Ingé partenaires/tutelles
      • Offres de Stages M2-Ingé
    • Le pôle lillois du GIP-CNFM
    • Nano-École Lille
  • Contact
    • Localisation
    • Formulaire de contact
    • Annuaire Intranet
  • Nos soutiens
  • en_GB
  • Rechercher
  • Menu Menu
ACTUALITES

THESE : Développement d’un microsystème intégrant les fonctions microfluidiques pour la caractérisation biophysique de cellules cancéreuses uniques

Soutenance de thèse
Yuki TAKAYAMA

Jeudi 28 mars 2019 à 14h00
IEMN – Amphithéâtre – Cité Scientifique – Avenue Poincaré – Villeneuve d’Ascq

Jury:
  • C. DEJOUS – IMS Université de Bordeaux, (Rapporteur)
  • V. TALY – Université Sorbonne Paris Cité / INSERM, CNRS, (Rapporteur)
  • C. LEGALLAIS – Université de Technologie de Compiègne / CNRS , (Examinatrice)
  • C. LAGADEC – CPAC, Université de Lille / INSERM , (Examinateur)
  • H. FUJITA – IIS, The University of Tokyo, (Invité)
  • M. C. TARHAN – ISEN Lille/ Yncréa (Examinateur, co-encadrant)
  • D. COLLARD – IEMN / CNRS (Directeur de thèse)
Résumé :
Cette thèse propose un dispositif original qui permet la mesure simultanée des caractéristiques électriques et mécaniques de cellules circulantes uniques. Dans un premier temps, différentes lignées cellulaires sont comparées sur la base de caractérisations mécaniques réalisées par AFM, une technique qui, ici, s’est avérée difficile à mettre en œuvre pour ces cellules circulantes. Ensuite, des nanopincettes en silicium (SNTs, Silicon Nano tweezers) ont été modifiées pour permettre la manipulation de cellules et ont permis de concevoir et tester les éléments de base du futur dispositif MEMS, les caractérisations réalisées par les SNT ont permis de distinguer des cellules connues pour avoir des potentiels métastatiques différents. Finalement, la conception du nouveau dispositif MEMS intégrant le canal microfluidique est détaillée. Les actionneurs et les capteurs du dispositif ont ensuite été optimisés pour améliorer la sensibilité des mesures et le dispositif complet a ensuite été validé par la manipulation et les mesures électriques et mécaniques de cellules uniques. Cette étude montre que les SNT sont capables de distinguer différentes lignées cellulaires par leurs propriétés mécaniques. En exploitant la topologie des SNT, un micro dispositif original intégrant le canal microfluidique pour le transport des cellules a été conçu, optimisé, fabriqué et testé. Ce dispositif est capable de contrôler les écoulements des solutions dans le micro canal, et de détecter les effets mécaniques et électriques induits par différents types de solutions ayant des viscosités (solution avec différentes concentrations de glucose) et des conductivités variées (solution ayant différentes concentrations de NaCl). Ce dispositif est également capable de capturer des cellules uniques dans le canal intégré. Les cellules capturées ont été caractérisées mécaniquement et électriquement pour en extraire les informations relatives à leur taille, leur rigidité, leurs pertes visqueuses ainsi que leurs propriétés électriques. En conclusion, les analyses multi-paramètres réalisées par ce nouveau dispositif s’avère être une voie prometteuse pour examiner le caractère métastatique de cellules tumorales circulantes.
Abstract :

In this thesis, a novel device has been introduced to perform simultaneous mechanical and electrical characterization of single circulating cells. Initially, different cell lines are compared based on mechanical properties obtained by AFM which perform poorly on circulating cells. As the next step, Silicon NanoTweezers (SNTs), modified to perform measurements on single cells, are used to test the MEMS elements of the proposed device as well as to distinguish cell lines with different metastatic potential. Finally, the proposed device is designed to have a microchannel integrated with the MEMS elements. The stimulating and detecting MEMS elements are optimized for better performance and the device is tested to perform single cell measurements. Although the AFM measurements suffer from serious shortcomings when applied on circulating cells, this study shows that SNT can be used to distinguish different cell lines based on their mechanical properties. Using the SNT geometry, the proposed device with integrated microchannel is designed, optimized, fabricated and tested. The optimized device is capable of handling solutions inside the channel, and also detecting the mechanical and electrical alterations among various solutions having different viscosity and ionic strength. The device is also tested on capturing a single cell. The captured cells are used for performing mechanical and electrical measurements simultaneously to provide information on the size, stiffness and viscous losses together with electrical properties. To conclude, the practical multi-parameter analysis provided with the proposed device is a promising way to investigate the metastatic potentials of circulating tumour cells.

Logo
Cité Scientifique
Avenue Henri Poincaré
CS 60069
59 652 Villeneuve d'Ascq Cedex, France
Tel : 03 20 19 79 79
CNRS Logo University of Lille Logo University Polytech Logo Junia Logo Centrale Lille Logo Renatech Logo RFnet Logo
Plan du site
© Copyright Service ECM et pôle SISR 2024
  • Production scientifique
  • Mentions légales
  • Politique de confidentialité
Faire défiler vers le haut
fr_FR
fr_FR
en_GB
Nous utilisons des cookies pour vous garantir la meilleure expérience sur notre site web. Si vous continuez à utiliser ce site, nous supposerons que vous en êtes satisfait.OKNonPolitique de confidentialité