Corentin Sthioul
Le 11 décembre 2025 à 10h00
Amphithéâtre LCI
Jury :
- Rapporteuse: Marie-Paule Besland, Directeur de recherche au CNRS – IMN
- Rapporteur Joao Marcelo Jordao Lopes, Senior scientist au PDI
- Examinateur Mohamed Al Khalfioui, Maître de conférences à l’Université Côte d’Azur – CRHEA
- Examinateur Matthieu Jamet, Directeur de recherche au CEA – Spintec
- Examinateur Aldelkarim Ouerghi, Directeur de recherche au CNRS – C2N
- Examinatrice Pascale Diener, Enseignante-chercheuse à JUNIA – IEMN
- Directeur de thèse :Xavier Wallart, Directeur de recherche au CNRS – IEMN
Résumé :
En revanche, HfSe₂ préparé sur GaP ne forme que la phase 1T, et sa cristallinité est presque indépendante des conditions de croissance, mais dépend plutôt de la température de recuit. L’épaisseur joue également un rôle important, le faible désaccord de maille avec GaP induisant une légère contrainte dans les couches minces qui se relâche avec l’épaisseur. Sur substrats de silicium, cependant, HfSe₂ souffre de l’instabilité de la demi-monocouche de GaSe et de la formation d’une phase intermédiaire de SiSex. La caractérisation électronique suggère un dopage de type N dans les couches minces de HfSe₂, qui est réduit dans les couches plus épaisses, conduisant à une résistivité élevée. Ce dopage N est largement préservé dans les hétérostructures TaSe₂/HfSe₂, bien que ces dernières subissent une importante interdiffusion à l’interface. »
Abstract:
In this thesis, MBE is employed to grow TaSe₂ on GaP(111)B and GaAs(111)B substrates and HfSe₂ on GaP(111)B and Si(111). These semiconducting three-dimensional (3D) substrates are commercially available, but they require a passivation of their surface prior to 2D material growth. This has been achieved through an annealing under a Se flux for GaP and GaAs, whereas a self-limiting GaSe growth has allowed the deposition on a GaSe half-monolayer on Si. In each case, once the electronic properties and the morphology of the resulting surface has been fully characterized, the influence of the growth parameters during TMDC epitaxy is discussed. The focus on a metallic TMDC (TaSe₂) and a semiconducting one (HfSe₂) finally offers the opportunity to grow a 2D metal/semiconductor heterostructure.
In TaSe₂ monolayers, Mott insulating 1T or metallic 1H phase can be selectively grown at high or low substrate temperature, respectively. On the other hand, the stable H polytypes are favored in fewlayers, for which the rotational alignment and crystallinity improve with increasing growth temperature. However, a rougher morphology is observed around 400–500 °C, whereas at higher temperature, a Se-deficiency is revealed in the TaSe₂ few-layers accompanied by an interdiffusion with the GaP substrate. Still, this substrate appears more suited than GaAs, which suffers from a large Se incorporation during TaSe₂ growth. The 1T-TaSe₂ monolayers reveal a moiré induced by the different GaP lattice parameter, in addition to the expected √13×√13 charge density wave and Mott insulating phase stable at room temperature, contrasting with the metallic conductivity of H phases. By contrast, HfSe₂ grown on GaP exhibits only the 1T phase, and its crystallinity is almost independent of the growth conditions, but rather depends on the annealing temperature. The thickness also plays an important role, the small lattice mismatch with GaP inducing a slight strain in thin layers which is relaxed with thickness. On Si substrates, however, HfSe₂ suffers from the instability of the GaSe half-monolayer and the formation of an intermediate SiSex phase. Electronic characterization suggests a n-type doping in thin HfSe₂layers which is reduced in thicker films, leading to a high resistivity. This n-type character is largely preserved in the TaSe₂/HfSe₂heterostructures although the latter suffer from a significant intermixing at the interface. »






