IEMN
  • Accueil
  • Actualités
    • Newsletters de l’IEMN
    • Offres de Stages M2-Ingé
    • Les offres d’emplois
    • Toutes les actualités
  • L’Institut
    • Présentation
    • Organisation de l’institut
    • La Direction Scientifique
    • La Direction Technologique
    • La direction administrative et financière
    • Règlement intérieur
    • Nos engagements
  • La Recherche
    • Les départements scientifiques
      • Matériaux Nanostructures et Composants
      • Micro/nano et optoélectronique
      • Technologies des télécommunications et Systèmes intelligents
      • Acoustique
    • Les groupes de recherche
    • Les projets phares
  • Production Scientifique
    • Publications IEMN
    • Ressources production scientifique
  • Les plateformes
    • CMNF – Plateforme Centrale de Micro Nano Fabrication
      • Pôle Gravure et implantation
      • Pôle Analyse In Line
      • Pôle Soft Lithographie et Bio Microfluidique
      • Pôle Dépôts et épitaxie
      • Pôle Lithographie
      • Pôle Packaging
      • Staff CMNF
    • PCMP – Plateforme de Caractérisation Multi-Physique
      • Pôle Microscopie en Champ Proche (PCP)
      • Pôle Caractérisation Hyperfréquence, Optique et Photonique (CHOP)
      • Pôle Systèmes de COMmunications avancées et prototypage (SigmaCOM)
      • Pôle Caractérisation et Compatibilité ElectroMagnétique et prototypage (C2EM)
      • Staff PCMP
    • Prestations proposées par nos plateformes
  • Partenariat – Valorisation
    • Les Collaborations Académiques
    • Projets ANR
    • Principales collaborations internationales
    • Les partenariats industriels
    • Les laboratoires communs IEMN-Industrie
    • Les startups
  • La Formation à la Recherche
    • L’après-thèse
      • Faire un post-doc à l’IEMN
      • Vers le monde des entreprises et de l’industrie
      • Devenir Enseignant-Chercheur
      • Devenir Chercheur
      • Créer son entreprise à l’IEMN
      • FOCUS sur un ingénieur SATT issu de l’IEMN
    • Une thèse à l’IEMN
      • Soutenances de thèses et HDR
      • Sujets de thèses
      • Les financements
      • Les études doctorales
    • Master – Ingénieur
      • Masters ULille
        • Master Life Sciences and Technologies graduate program
        • Master Nanosciences and Nanotechnologies – Speciality ETECH
        • Master Réseaux et Télécommunications
      • Masters UPHF-INSA
        • Master Ingénierie des Systèmes embarqués et Communications Mobiles
        • Master Cyber-Défense et Sécurité de l’information
        • Master Matériaux, Contrôle, Sécurité
        • Master Ingénierie des Systèmes Images et Sons
      • Écoles Ingé partenaires/tutelles
      • Offres de Stages M2-Ingé
    • Le pôle lillois du GIP-CNFM
    • Nano-École Lille
  • Contact
    • Localisation
    • Formulaire de contact
    • Annuaire
  • Nos soutiens
  • en_GB
  • Rechercher
  • Menu Menu
ACTUALITES

THESE : BAHOUTH R. – Interaction des ondes ultrasonore avec les endommagements en exploitant la transmission de données numériques par ondes guidées : application aux véhicules intelligents

BAHOUTH R.

Soutenance 7 Juin 2022

Thèse de doctorat en Acoustique, Université Polytechnique Hauts-de-France, ED PHF,

Résumé :

La transmission de données numériques à travers des canaux métalliques est recommandée dans certaines industries comme le nucléaire, l’aérospatiale et les véhicules intelligents. En plus de l’effet de la cage de Faraday des ondes électromagnétiques, un autre problème lié à la présence des endommagements existe. Pour cela, les ondes guidées ultrasonores, telles que les ondes de Lamb, peuvent être un bon substitut, car elles peuvent fournir des informations sur l’état de santé de la structure. L’objectif de ce travail est de construire une plate-forme de communication sans fil à haut débit en assurant une détection d’endommagement simultanément et en utilisant des ondes guidées ultrasonores, à travers des plaques saines et endommagées. Dans un premier temps, les démodulations cohérentes et non cohérent par amplitude, Ampltidue Shift Keying (ASK) et On-Off- Keying (OOK) et par phase, Binary Phase Shift Keying (BPSK) sont étudié. Les résultats pour la plaque saine ont montré que la dispersion, les multiples réflexions affectent fortement la qualité du signal. C’est pour cela un algorithme de démodulation numérique basé sur l’intercorrelation est testé expérimentalement pour une plaque saine. Après cela, l’effet des multiples réflexions et des conversions de mode causées par les Encoches Symétriques et Asymétriques (ES et EA), sont étudiés en utilisant la méthode BPSK qui offre la stabilité et le débit de données les plus élevés. Les résultats expérimentaux basés sur l’analyse du Pourcentage d’Erreur des Bits (PEB) prouvent que l’algorithme a réussi à compenser l’effet de la dispersion pour la plaque saine, et de multiples réflexions et conversions de mode pour les plaques endommagées. Enfin, un concept de communication et de détection des endommagements simultané en utilisant une simulation par élément fini est proposé. Ce concept est basé sur la séparation des modes fondamentaux et du pourcentage de ressemblance des signaux. Les résultats ont montré une diminution proportionnelle du pourcentage de ressemblance pour le mode S0 par rapport à la plaque saine, avec l’augmentation de la profondeur d’endommagement. La diminution dans le cas des EAs était supérieure aux ESs.

Abstract :

The transmission of digital data through metallic channels is recommended in certain industries such as nuclear, aerospace and intelligent vehicles. In addition to the Faraday cage effect of electromagnetic waves, another problem related to the presence of damage exists. For this, ultrasonic guided waves, such as Lamb waves, can be a good substitute, as they can provide information about the health of the structure. The objective of this work is to build a high-speed wireless communication platform by providing damage detection simultaneously and using guided ultrasonic waves, through healthy and damaged plates. First, coherent and non-coherent demodulations by amplitude, Ampltidue Shift Keying (ASK) and On-Off- Keying (OOK) and by phase, Binary Phase Shift Keying (BPSK) are studied. The results for the healthy plate showed that dispersion, multiple reflections strongly affect the signal quality. Therefore a digital demodulation algorithm based on intercorrelation is experimentally tested for a healthy slab. After that, the effect of multiple reflections and mode conversions caused by Symmetric and Asymmetric Notches (ES and EA), are studied using the BPSK method which offers the highest stability and data rate. Experimental results based on the Bit Percentage Error (BPE) analysis prove that the algorithm successfully compensated for the effect of dispersion for the healthy plate, and multiple reflections and mode conversions for the damaged plates. Finally, a concept for simultaneous communication and damage detection using finite element simulation is proposed. This concept is based on the separation of the fundamental modes and the percentage of similarity of the signals. The results showed a proportional decrease in the percentage of similarity for the S0 mode with respect to the healthy plate with increasing damage depth. The decrease in the case of EAs was greater than ESs.

Logo
Cité Scientifique
Avenue Henri Poincaré
CS 60069
59 652 Villeneuve d'Ascq Cedex, France
CNRS Logo University of Lille Logo University Polytech Logo Junia Logo Centrale Lille Logo Renatech Logo RFnet Logo
Plan du site
© Copyright Service ECM et pôle SISR 2024
  • Production scientifique
  • Mentions légales
  • Politique de confidentialité
Faire défiler vers le haut
fr_FR
fr_FR
en_GB
Nous utilisons des cookies pour vous garantir la meilleure expérience sur notre site web. Si vous continuez à utiliser ce site, nous supposerons que vous en êtes satisfait.OKNonPolitique de confidentialité