IEMN
  • Accueil
  • Actualités
    • Newsletters de l’IEMN
    • Offres de Stages M2-Ingé
    • Les offres d’emplois
    • Toutes les actualités
  • L’Institut
    • Présentation
    • Organisation de l’institut
    • La Direction Scientifique
    • La Direction Technologique
    • La direction administrative et financière
    • Règlement intérieur
    • Nos engagements
  • La Recherche
    • Les départements scientifiques
      • Matériaux Nanostructures et Composants
      • Micro/nano et optoélectronique
      • Technologies des télécommunications et Systèmes intelligents
      • Acoustique
    • Les groupes de recherche
    • Les projets phares
  • Production Scientifique
    • Publications IEMN
    • Ressources production scientifique
  • Les plateformes
    • CMNF – Plateforme Centrale de Micro Nano Fabrication
      • Pôle Gravure et implantation
      • Pôle Analyse In Line
      • Pôle Soft Lithographie et Bio Microfluidique
      • Pôle Dépôts et épitaxie
      • Pôle Lithographie
      • Pôle Packaging
      • Staff CMNF
    • PCMP – Plateforme de Caractérisation Multi-Physique
      • Pôle Microscopie en Champ Proche (PCP)
      • Pôle Caractérisation Hyperfréquence, Optique et Photonique (CHOP)
      • Pôle Systèmes de COMmunications avancées et prototypage (SigmaCOM)
      • Pôle Caractérisation et Compatibilité ElectroMagnétique et prototypage (C2EM)
      • Staff PCMP
    • Prestations proposées par nos plateformes
  • Partenariat – Valorisation
    • Les Collaborations Académiques
    • Projets ANR
    • Principales collaborations internationales
    • Les partenariats industriels
    • Les laboratoires communs IEMN-Industrie
    • Les startups
  • La Formation à la Recherche
    • L’après-thèse
      • Faire un post-doc à l’IEMN
      • Vers le monde des entreprises et de l’industrie
      • Devenir Enseignant-Chercheur
      • Devenir Chercheur
      • Créer son entreprise à l’IEMN
      • FOCUS sur un ingénieur SATT issu de l’IEMN
    • Une thèse à l’IEMN
      • Soutenances de thèses et HDR
      • Sujets de thèses
      • Les financements
      • Les études doctorales
    • Master – Ingénieur
      • Masters ULille
        • Master Life Sciences and Technologies graduate program
        • Master Nanosciences and Nanotechnologies – Speciality ETECH
        • Master Réseaux et Télécommunications
      • Masters UPHF-INSA
        • Master Ingénierie des Systèmes embarqués et Communications Mobiles
        • Master Cyber-Défense et Sécurité de l’information
        • Master Matériaux, Contrôle, Sécurité
        • Master Ingénierie des Systèmes Images et Sons
      • Écoles Ingé partenaires/tutelles
      • Offres de Stages M2-Ingé
    • Le pôle lillois du GIP-CNFM
    • Nano-École Lille
  • Contact
    • Localisation
    • Formulaire de contact
    • Annuaire
  • Nos soutiens
  • en_GB
  • Rechercher
  • Menu Menu
ACTUALITES

THESE : Salim ALHAJJ ASSAF – Textiles innovants nanostructurés pour le confort thermique

Salim ALHAJJ ASSAF

Soutenance : 15 juillet 2020 à 14h00
Amphithéâtre de l’IEMN – Laboratoire central – Villeneuve d’Ascq

Jury :
  • Yan PENNEC, Professeur, Université de Lille, Directeur de thèse
  • Vincent  THOMY, Maître de conférences, Université de Lille, CoDirecteur de thèse
  • Bjorn MAES, Professeur, Université de Mons, Rapporteur
  • Frédérique  GADOT, Professeur, Université Paris Nanterre, Rapporteur
  • Christian  SEASSAL, Directeur de recherche, Ecole Centrale de Lyon, Institut des Nanotechnologies de Lyon, Examinateur
  • Eric  LHEURETTE, Professeur des Universités, Université de Lille, Examinateur
Résumé :

Au cours des dix dernières années, les nanostructures photoniques ont représenté un paradigme pour le contrôle des radiations thermiques, offrant un panel de propriétés passionnantes pour les applications énergétiques. En raison de leurs capacités à contrôler et à gérer les ondes électromagnétiques à l’échelle de la longueur d’onde dans l’infrarouge moyen (Mid-IR), les nanostructures photoniques ont démontré leur capacité à gérer les propriétés des radiations thermiques d’une manière radicalement différente des émetteurs thermiques conventionnels. Les progrès fondamentaux du contrôle du rayonnement thermique ont conduit à différentes applications dans le domaine de l’énergie, comme les dispositifs thermo-photovoltaïques ou à travers le concept de refroidissement radiatif diurne pour diminuer passivement la température des installations terrestres. Récemment, un autre domaine d’application est apparu dans le contrôle du rayonnement thermique, avec l’introduction de nanostructures photoniques dans les textiles.
Le but de la thèse est d’étudier différentes membranes photoniques passives qui modulent le rayonnement optique du corps humain dans l’IR moyen pour assurer la thermorégulation individuelle. Pour cela, nous avons étudié les propriétés optiques de membranes polymères, en fonction de leur structuration. Nous avons montré que la membrane photonique est capable de moduler l’amplitude de transmission de 28% au profit ou au dépend de l’absorption et de la réflexion. Nous avons déterminé le bilan thermique entre le corps humain et le milieu environnant à travers la membrane photonique, en tenant compte des mécanismes de rayonnement, de convection et de conduction. Nous avons trouvé que la température de la peau est supérieure de presque 2 °C lorsque le corps humain est revêtu d’une membrane photonique structurée. Cette étude a été réalisée à partir de calculs analytiques et de codes de simulation numérique par la méthode des éléments finis (FEM). L’étude numérique a été accompagnée par des expériences de fabrication en salle blanche à l’IEMN et de caractérisation par spectroscopie infra rouge (FTIR) à l’école d’ingénieur HEI.

Abstract :

For the past ten years, photonic nanostructures have represented a paradigm for the control of thermal radiations, offering a panel of exciting properties for energy applications. Because of their abilities to control and manage electromagnetic waves at the Mid-Infrared (Mid-IR) wavelength scale, photonic nanostructures demonstrate their ability to manage thermal radiations properties in a way drastically different from conventional thermal emitters. The fundamental advances in controlling thermal radiation led to different applications in the energy domain, as thermo photovoltaic devices or through the concept of daytime radiative cooling to passively decrease the temperature of terrestrial structures. Recently, another field of application has appeared in the thermal radiation control, with the introduction of photonic nanostructures in textiles for personal thermoregulation.
The goal of the thesis is to study different passive photonic membranes that modulate the human body optical radiations in the Mid-IR for personal thermoregulation. We have investigated the optical properties of different polymer membranes, considering the effect of their structuration. We showed that a photonic crystal membrane is able to modulate the transmission coefficient by 28% in benefit or deficit of both the absorption and reflection. We analyzed the thermal balance between the human body and the indoor environment through the photonic membrane, considering the radiation, convection and conduction mechanisms. We found that the temperature of the skin is almost 2°C higher when the human body is clothed with a structured membrane. The study was carried out on analytical calculations and numerical simulation with the help of the finite element method (FEM). The numerical study was supported by experiments in fabrication in the IEMN cleaning room and in characterization by infrared spectroscopy (FTIR) at the HEI engineering school.

Logo
Cité Scientifique
Avenue Henri Poincaré
CS 60069
59 652 Villeneuve d'Ascq Cedex, France
CNRS Logo University of Lille Logo University Polytech Logo Junia Logo Centrale Lille Logo Renatech Logo RFnet Logo
Plan du site
© Copyright Service ECM et pôle SISR 2024
  • Production scientifique
  • Mentions légales
  • Politique de confidentialité
Faire défiler vers le haut
fr_FR
fr_FR
en_GB
Nous utilisons des cookies pour vous garantir la meilleure expérience sur notre site web. Si vous continuez à utiliser ce site, nous supposerons que vous en êtes satisfait.OKNonPolitique de confidentialité