

Sujet thèse / PhD subject 2025

litre l'nese	Conception et fabrication de composants RF à polarité Azote sur	
	substrat de silicium	
PhD Title	Design and fabrication of Nitrogen-polar III-Nitrides HEMTs on	
	silicon for RF applications	
(Co)-Directeur	Farid Medjdoub	E-mail : <u>farid.medjdoub@iemn.fr</u>
(Co)-Directeur		E-mail :
(Co)-Encadrant (s)		E-mail :
Laboratoire	IEMN	Web :
Groupe(s)	WIND	Web: <u>https://www.iemn.fr/en/la-</u>
		recherche/les-groupes/groupe-wind
Projet phare principal	Composants	
Demande de fléchage IEMN ?	Non :	
(Energie / Nanocaractérisation	Flagship choisi :	
/ Technologies		
Neuromorphiques)		
Demande de labellisation Université	Oui :	
de Lille (GREAL, labellisée)	Label : GREAL	
	Contrat Doctoral	ULille 🔀 Centrale Lille 🗍 JUNIA
Financement demandé	Etablissement	
	Région ou Autre	Co financement (Préciser l'origine,
	Préciser :	demande en cours, et si acquis ou
		pas) :
		ANR PRCE, demande en cours

Résumé / Abstract :

This thesis is targeting the development of Nitrogen-Polar III-Nitrides on silicon substrates using Molecular Beam Epitaxy. N-polar III-Nitrides will be achieved by polarity inversion using a thin epitaxial metallic layer of Niobium Nitride (NbN). Polarity inversion, more specifically from metal-polar to nitrogen-polar, using this approach has been recently demonstrated. The work will focus on the development and optimization of this innovative process (hybrid semiconductor/metal/semiconductor heterostructures), to study and understand the properties of N-polar III-N materials. The goal of the project is the achievement of high structural quality with low impurity concentrations N-polar planar III-N heterostructures grown on silicon substrates. The N-polar III-Nitrides optimized in the project will be used to develop full RF HEMTs in order to evaluate their potential for high frequency applications (>40 GHz).

The N-Polar project aims to develop innovative processes for the epitaxial growth of nitrogen-polar GaN heterostructures on silicon substrates for the first time, as well as associated technologies for high-performance RF HEMTs, with a particular focus on improving thermal management. The growth will be conducted using Ammonia-Molecular Beam Epitaxy (NH3-MBE), with the goal of achieving a pure nitrogen-polar GaN-based heterostructure by mastering NbN epitaxy and understanding interface formation to avoid the formation of metal-polar domains.

The project will also explore various approaches to fabricate nitrogen-polar HEMTs, including alloyed contacts and epitaxial regrowth of contacts, to enhance electrical performance by developing a backside assembly process for heat management.

III-Nitrides ((Al,Ga,In)-N) have enabled advancements in device fabrication, particularly in RF HEMTs. However, traditional metal-polar structures have limitations at high frequencies, while nitrogen-polar HEMTs offer improved efficiency and power, making them suitable for next-generation RF applications in wireless technologies and communications. The shift to a nitrogen-polar structure allows for better management of two-dimensional electron gas (2DEG) characteristics and optimization of back-barrier and contact resistances.

The project addresses challenges such as hillock formation, impurity incorporation, and the development of technology specific to nitrogen-polar devices. While high magnesium doping is used to stabilize nitrogen-polar GaN, it introduces defects that are not ideal for transistors, highlighting a gap in achieving device-quality nitrogen-polar epilayers on silicon. The N-Polar project proposes a new approach to overcome these challenges by utilizing the successful growth of III-N/NbN heterostructures to enhance the development of nitrogen-polar structures, which has never been achieved before.

The project aims to create original epitaxial growth processes and technological components to fabricate high-performance nitrogen-polar GaN-based transistors, potentially leading to advancements in microwave technology for wireless applications. By using silicon substrates as a foundation, the project promises significant industrial impact and differentiation from existing SiC-based solutions, which are predominantly sourced outside of Europe.

The PhD candidate will carry out TCAD simulation, fabrication and characterization of these novel devices.