

Ecole doctorale régionale Sciences Pour l'Ingénieur Lille Nord-de-France - 072

Titre Thèse	Tip enhanced spintronic emitters for terahertz nanoscopy	
(Co)-Directeur	Mathias Vanwolleghem	E-mail: mathias.vanwolleghem@univ-lille.fr
(Co)-Directeur		
(Co)-Encadrant		
Laboratoire	IEMN, Université Lille	Web: www.iemn.fr
Equipe	THz Photonics	Web:https://www.iemn.fr/la-recherche/les-groupes/
		photonique-thz
Financement prévu	Contrat Doctoral Etablissement	ULille UPHF Centrale Lille Yncrea
	Région – Autre	Contrat de recherche Préciser : ANR 2021 sous
	_	évaluation
Financement acquis?	Contrats de Recherche Préciser	Autre

Résumé du sujet :

The THz frequency range (0.1-20THz; 4-80meV) is home to many low-energy elementary excitations in condensed matter (phonons, magnons, plasmons, ...). Revealing their spectra at the nanoscale is currently a hot topic in spectroscopic micro- and nanoscopy, since it can bring insight of such low-energy THz dynamics in a contactless manner. Examples include plotting carrier dynamics in nanostructured semiconductor structures, mapping plasmon dynamics for 2D electronics [1], revealing phonon couplings and THz antiferromagnetic magnon excitations [2,3]. As such having a low-noise, high bandwidth spectroscopic source up to 20 THz, is crucial for developing the next-generation of electronic devices. High resolution nanoscale THz spectroscopy of carrier dynamics in spintronics and 2D materials in the wide frequency range from 1-20THz is currently the center of huge research attention. Attempts at tackling this challenge are seriously hampered by a lack of intense, sufficiently wideband THz sources and limited signal-to-noise ratio (SNR) detection.

This research project will bring a disruptive change for wideband THz nanospectroscopy. At its heart lies the nanoscale integration of an innovative spintronic THz emitter (STE). This includes three aspects:

- 1) an intrinsically spectrally ultra-broadband, intense, polarization-controllable and nanometric thin THz source, based on ultrafast spintronic effects.
- 2) enhancing its performance by coupling it to a metallic tip. This allows not only (a) by strong near-field confinement to increase the SNR and achieve nanoresolved near fields, but also (b) an innovative 3D THz nanospectroscopy with the emitter directly integrated on a AFM tip.
- 3) generate the very first hyperspectral images up to 15THz of two heavily pursued goals in nanoelectronics and spintronics: (i) THz plasmon dynamics in 2D materials and (ii) THz magnon-phonon coupling in multiferroic BiFeO 3 [4].

This PhD research will be conducted in the framework of a nationally research project (with partners at the LPENS and the Ecole Polytechnique) that is currently under evaluation for funding.

Dr. Mathias Vanwolleghem, mathias.vanwolleghem@univ-lille.fr

- [1] M. Zhang et al., Adv. Opt. Mater. 7, 1900689 (2019).
- [2] P. Němec et al., Nat. Phys. 14, 229 (2018).
- [3] J. Walowski et al., J. Appl. Phys. 120, 140901 (2016).
- [4] P. Rovillain et al., Nat. Mater. 9, 975–979 (2010).