SILPHYDE (SImuLation PHYsique de Dispositifs Electroniques et optoélectroniques)

lemn Institut d'Electronique, de Microélectronique et de Nanotechnologie **UMR CNRS 8520**

L. Baudry (MC), C. Dalle (CR), F. Dessenne (MC), J.-L. Thobel (CR).

Simulation of GaN-based devices

Monte Carlo simulations Materials	By-product of MC simulations: transport parameters for	structures Flat doping	Cathode N ⁺⁺ 10 ²⁵ m ⁻³ 0.1 μm	Active zone N 4×10 ²³ m ⁻³ 0.22 μm			Anode N ⁺⁺ 10 ²⁵ m ⁻³ 0.18 μm
heterostructures 2D MC HEMTs simulation	'macroscopic' models	Notch Detached	Ν ⁺⁺ 10 ²⁵ m ⁻³ 0.1 μm Ν ⁺⁺	Ν ⁻ 10 ²² m ⁻³ 0.05 μm Ν	N 4×10 0.16 N⁻	N ²³ m ⁻³ 5 μm N	Ν ⁺⁺ 10 ²⁵ m ⁻³ 0.19 μm Ν ⁺⁺
		notch P* spike	10 ²⁵ m ⁻³ 0.1 μm N ⁺⁺ 10 ²⁵ m ⁻³	4×10 ²³ m ⁻³ 0.05 μm P ⁺ 5×10 ²³ m ⁻³	10 ²² m ⁻³ 0.05 μm	4×10 ²³ m ⁻³ 0.12 μm 4 24 m ⁻³	10 ²⁵ m ⁻³ 0.18 μm N ⁺⁺ 10 ²⁵ m ⁻³
Macroscopic modeling:			0.1 μm	0.02 μm	0.19	μm	0.19 μm

Simulation of GaN THz oscillators Planar parallel waveguide DTED oscillator

Prospective : development of SIMAX

2D/3D electromagnetic/transport general simulator

Modeling of ferroelectric thin films and nanostructures

Collaboration with Amiens, Rostov on Don, Cambridge University, Argonne National Lab.

Context: Application to **nonvolatile memories** (high integration, speed, low consumption)

New switching mechanisms

Ferroelectric multibit memory cells

Prospective

• Standard binary logic reaches its limits

Search for new ferroelectric systems

Graphene and 2D materials for electronics, spintronics and valleytronics

Collaboration with Warsaw University of Technology

Context: Strong interest in graphene, wealth of applications, emergence of new 'beyond-graphene' materials

We develop and use Monte Carlo models (Relevant for larger scales than ab-initio model, suitable for future use in device simulators)

Electron transport	Spin properties	Relaxation phenomena	Prospective: valleytronics
raphene, Silicene: linear bands ecewise analytical scattering probabilities pecial techniques for: e-e scattering	 Graphene is attractive for spintronics applications Retains spin information for a long time Monte Carlo simulations of spin relaxation in graphene with high electron density 	Powerful tool to reveal physical mechanisms 'Hot electrons': at the heart of many devices operation Monte Carlo simulations of relaxation in spin-polarized graphene	Idea: 2 valleys (K,K') non-equivalent, energetically degenerate Valley index can be used to carry information like spin in Spintronics

S

Calculated V-F Characteristics

P. Borowik, J.-L. Thobel, L. Adamowicz : Semicond. Sci. Technol. 31, 115004 (2016) Physica Status Solidi (A) Applications and Materials 213(11) (2016)

time [ns]

What materials ?

Graphene ?

t = 0 fs

t = 3 fs

 $t = 30 \, fs$

0.4 0.6

TMDCs (MoS_2) ?

Due to symmetry: long valley life time.

No inversion symmetry Easy to act on valley (optically...)

+ Variety of materials and possible associations (Van der Waals heterostructures)

Whatever the materials, Valley dynamics still poorly known.

Goal: Develop Monte Carlo models for studying valley dynamics in systems of interest and, at longer term, devices. First step: valley relaxation in graphene with defects/impurities.

