Une galerie des murmures dans une goutte d’eau


Les ondes acoustiques peuvent servir à contrôler, agiter et mélanger les fluides avec une extrême précision. Des chercheurs de l’Institut d’électronique, de microélectronique et de nanotechnologie, du laboratoire Matière et systèmes complexes et de l’Institut des nanosciences de Paris ont expliqué comment ces ondes pouvaient induire la formation de tourbillons à l’échelle d’une goutte d’eau. Ce mécanisme se rapproche du phénomène acoustique de la galerie des murmures. Ces travaux sont publiés dans Journal of Fluid Mechanics, où ils sont mis en avant par un Focus on Fluids.

Très prisée dans le domaine biomédical, la microfluidique consiste à manipuler de très faibles volumes de liquides. Si les mélanges restent une opération complexe à ces échelles, ils peuvent être réalisés à l’aide d’ondes acoustiques de surface. Ces ondes, d’une fréquence de l’ordre du mégahertz, transfèrent graduellement leur quantité de mouvement au fluide, qui s’agite alors avec une formation de microtourbillons. Des chercheurs de l’Institut d’électronique, de microélectronique et de nanotechnologie (IEMN, CNRS/Université Lille 1/ISEN Lille/Université Valenciennes/UVHC/École Centrale Lille), du laboratoire Matière et systèmes complexes (MSC, CNRS/Université Paris Diderot) et de l’Institut des nanosciences de Paris (INSP, CNRS/UPMC) ont mis en évidence des topologies particulières de tourbillons, issues d’un phénomène apparenté à une galerie des murmures. Dans cette curiosité architecturale, un son peut être perçu sur de longues distances en raison de sa focalisation le long de voûtes. Deux personnes peuvent ainsi discuter à voix basse de chaque côté de certaines coupoles.

Ici, des calculs numériques ont dévoilé la focalisation d’un groupe d’ondes qui se propagent sur des orbites périodiques le long de la surface de la goutte. Elles sont en effet entièrement réfléchies quand elles atteignent le bord intérieur de la goutte, soit l’interface entre l’air et le liquide, et sont guidées en boucles elliptiques. La forme de calotte sphérique de la goutte, façonnée par sa tension de surface, est à l’origine de cette concentration des ondes sur trois «?caustiques?», qui sont des sortes de lignes focales. Cette disposition très hétérogène du champ acoustique force l’écoulement interne à adopter une structure particulière, constituée d’une ou deux paires de tourbillons. Ce sont eux qui permettent un mélange efficace au sein de la goutte.

Galerie des murmures dans une gouttelette. (A-B) trajectoire des rayons acoustiques guidés par la surface de la goutte. (C) Simulation des courants acoustiques générés par les galeries des murmures. (© IEMN – MSC – INSP)

Références :
On the influence of viscosity and caustics on acoustic streaming in sessile droplets: an experimental and a numerical study with a cost-effective method
A. Riaud, M. Baudoin, O. Bou Matar, J.-L. Thomas & P. Brunet,
Journal of Fluid Mechanics (juillet 2017)
DOI: https://doi.org/10.1017/jfm.2017.178

 

Contact chercheur :
Antoine Riaud

Contact communication INSIS :
insis.communication@cnrs.fr

IEMN, l’ultra haut débit en test mondial pour préparer l’arrivée de la 5G et d’un Wi-Fi boosté

Un potentiel énorme par rapport aux ondes radio classiques

«  Buuut !  » signale le commentateur lors d’un match de foot en direct à la télévision. Mais saviez-vous que la transmission du but arrivait sur vos écrans quelques secondes après l’action réelle dans le stade ?

Des « vrais » directs

Un nouveau système de communication ultra-rapide pourrait changer la donne et vous faire connaître enfin les sensations d’un « vrai » direct. Son nom : le Térahertz, une technologie dont le premier essai mondial en extérieur a eu lieu sur les toits de Dunkerque. «  On cherche à créer une communication sans fil la plus rapide possible, à très courte distance – moins de 700 mètres – et avec une fréquence de 300 GHz. C’est la première démonstration mondiale à cette fréquence et à cette distance », explique Guillaume Ducournau, coordinateur du projet, sur lequel il travaille depuis huit ans, à l’institut d’électronique et microélectronique et nanotechnologies de l’université Lille 1. «  On utilise les ondes térahertz, qui offrent un potentiel énorme par rapport aux ondes radio classiques  ».

Un émetteur avait été installé au troisième étage du bâtiment du remorquage, près de l’hôtel des technologies, et un récepteur (notre photo) sur les toits du laboratoire IRenE, plateforme d’innovation technologique de l’Université du Littoral, située avenue Schumann. «  Il y a vingt ans, c’était de la science-fiction !  », commente Éric Fertein, chercheur au laboratoire de physico-chimie de l’atmosphère de Dunkerque, soutien de l’opération.

Des applications pour la santé, les transports…

Le développement d’un nouveau système de communication ultra-rapide est devenu inévitable dans la perspective de l’arrivée en 2020 de la 5G. «  Aujourd’hui, pour le Wi-Fi, on fonctionne avec une fréquence de 2,4 GHz, ce qui limite le débit. Avec le Térahertz, on est à 300 GHz ! D’ici à 2025, on pourrait ainsi multiplier le débit Wi-Fi par 100 voire 1 000. On passerait au TiFi, en référence aux ondes térahertz  », souligne Guillaume Ducournau. Des transmissions de données ultra-rapides, plus de décalage entre l’action et la retransmission, plus de câbles à tirer pour alimenter les caméras…

Ce qui ouvre le champ à de multiples applications : «  Par exemple, dans les salles de chirurgie, plus besoin de marcher sur des tonnes de câbles pour une opération à distance en direct, illustre Guillaume Ducournau. Un avion qui viendrait se garer à sa porte d’embarquement et qui aurait besoin de télécharger énormément de données, pourrait le faire en quelques secondes. Et que dire des télés qui seraient en flux réel ! C’est une fierté de faire ce premier pas à Dunkerque.  » Le brevet et la commercialisation de la technologie pourraient suivre, d’ici quelques années.

Les télés dans les starting-blocks

Les ondes térahertz pourraient bien changer la vie des diffuseurs télé et de leurs techniciens, notamment lors des grands événements sportifs.

Des kilomètres de câbles

«  Actuellement, pour la retransmission de Roland Garros, on doit tirer dix kilomètres de câbles pour brancher les caméras, trente kilomètres pour la dernière étape du Tour de France à Paris. C’est un travail d’installation énorme, qui dure deux jours. Pour le Tour de France, on laisse même les câbles toute l’année pour éviter d’avoir à les acheminer l’année suivante  », explique Pascal Duquenne, responsable production France 3 basé à Lambersart. L’arrivée du mode de retransmission térahertz, beaucoup plus rapide, «  fera disparaître tous les câbles. Ce sera un gain de temps et d’argent pour les télévisions  ».

À tel point d’ailleurs que les Japonais se sont déjà saisis de la technologie en 2008 lors des Jeux Olympiques de Pékin, mais à une fréquence et à une distance moindre que celles testées à Dunkerque mardi. Les techniciens nippons comptent bien réitérer l’expérience en 2020 pour les Jeux de Tokyo.

A. N. (Extrait de La Voix du Nord,  14 juin 2017)

Offre d’emploi : Post Doc “Développement d’antennes et métamatériaux textiles pour la récupération de l’énergie électromagnétique ambiante”

Offre de Post-Doctorat pour le développement d’antennes et métamatériaux textiles pour la récupération de l’énergie électromagnétique ambiante

Contexte

Ces dernières années, les objets connectés se sont immiscés dans la vie quotidienne, et des textiles connectés commencent à être proposés sur le marché. D’autres produits, dits textiles intelligents, comportant des capteurs et modules d’électroniques embarquées se sont aussi développés en s’orientant vers le marché professionnel (vêtements militaires ou de sécurité) et vers les domaines de la santé et du sport.
Cependant, leur fiabilité reste discutable en particulier à cause de problèmes liés à la connectivité et à l’alimentation des modules électroniques. Parmi différentes solutions d’alimentation, la récupération de l’énergie électromagnétique ambiante (ondes Wifi, GSM, TNT) est envisagée. Pour récupérer cette énergie, il est nécessaire de développer des antennes rectifiées (rectennas) composées dans le principe d’une antenne et d’un circuit de redressement. Cependant, une variante à l’antenne peut être l’utilisation de la localisation des champs observée dans les structures métamatériaux, et le circuit de redressement peut être réalisé au moyen d’une électronique dédiée.

Le projet LUMINOPTEX  (http:/project.web4projects.com/project/Luminoptex/Partenariat) est un projet Interreg France-Wallonie-Vlaanderen qui porte sur la conception et la mise en œuvre de nouveaux textiles intelligents pour des applications d’éclairage ambiant autonome dans les contextes du design intérieur, des tissus décoratifs ou de la signalétique.
Le projet fédère les compétences de six partenaires : le centre de R&D Materia Nova de Mons (Chef de file), le centre de R&D CENTEXBEL de Gand, le laboratoire GEMTEX de l’école d’ingénieur ENSAIT de Roubaix, l’IEMN (Institut d’Electronique de Microélectronique et de Nanotechnologie) de Villeneuve d’Ascq, l’ICTEAM de l’Université Catholique de Louvain, et le CIRMAP de l’Université de MONS. Dans le cadre de ce projet, les travaux menés par l’IEMN et l’ENSAIT portent plus particulièrement sur le développement de textiles permettant la récupération de l’énergie électromagnétique ambiante.

Description du poste

Dans le cadre du projet LUMINOPTEX, la personne recrutée aura pour mission le design et la caractérisation électromagnétique d’antennes et de structures métamatériaux textiles permettant de capturer le plus efficacement possible l’énergie des ondes WiFi et GSM. Pour cette application, les métamatériaux textiles pourront être considérés comme solution pour réduire la taille des antennes ou comme motifs résonnants propres permettant la localisation du champ électromagnétique en vue d’une amélioration de la conversion AC/DC.

Dans un premier temps, il sera demandé de définir et d’optimiser des antennes et des métamatériaux réalisables en technologie textile (broderie, tricot, tissage) par l’intermédiaire de simulations sur des logiciels commerciaux (HFSS, CST). Les structures seront alors proposées au partenaire ENSAIT et discutées avec lui. L’ENSAIT prendra alors à sa charge la fabrication de prototypes, et des simulations supplémentaires pourront être nécessaires suivant les contraintes de fabrications rencontrées. La seconde partie des missions portera sur la caractérisation électromagnétique des structures fabriquées à l’ENSAIT (pertes de retour, adaptation d’impédance, directivité, diagramme de rayonnement). Ces caractérisations seront menées au sein des plateformes de caractérisations RF et CEM de l’IEMN. Enfin, l’étude du circuit de rectification ne fait pas partie des missions principales de la personne recrutée. Cependant, elle pourra être sollicitée ponctuellement pour contribuer aux caractérisations électromagnétiques de composants et circuits électroniques dédiés, développés parallèlement dans le cadre du projet LUMINOPTEX.

Profil du candidat

Vous êtes docteur en électronique ou en physique appliquée spécialiste des hyperfréquences.
Vous avez une expérience notable en caractérisations électromagnétiques et vous maîtrisez les logiciels de simulations HFSS et/ou CST. Vous avez des connaissances approfondies en hyperfréquences, et des connaissances en métamatériaux seraient appréciées.
Idéalement, vous avez déjà développé des antennes rectifiés.
Vous êtes intéressé(e) par le développement des textiles intelligents.

Conditions de poste
  • Type de contrat : Post-doctorat sur 12 mois prolongeable jusque 6 mois.
  • Source de financement : contrat Interreg France-Walonie-Vlaanderen LUMINOPTEX.
  • Lieu : Institut d’Electronique de Microélectronique et de Nanotechnologie à Villeneuve d’Ascq (www.iemn.fr).
  • Début du contrat prévu : dernier trimestre 2017.
  • Rémunération brute : ~30k€/an, suivant grilles salariales réglementaires et selon le profil et l’expérience du candidat.

 

Candidature
  • Envoyer votre CV et une lettre de motivation développant votre expérience au format pdf à l’adresse ludovic.burgnies@iemn.univ-lille1.fr
  • Merci de limiter à 2Mo maximum la taille pour l’ensemble des documents envoyés.

 

Vmicro, spinoff de l’IEMN réalise la configuration verticale du premier microscope de champ proche de l’histoire

APPLIED PHYSICS LETTERS 110, 243101 (2017) [http://dx.doi.org/10.1063/1.4985125]

Instrumentation aux limites : le nouveau microscope à force atomique renouvelé par les capteurs micro-et nano- systèmes, basé sur un microsystèmes

Les microscopes sont des outils de travail quotidiens dans des domaines tels que l’électronique, la chimie, la métallurgie, les sciences de la vie, la recherche en physique. Disposer de microscopes performants est indispensable pour créer de nouvelles filières technologiques (qualifier les matériaux, les procédés) ou encore poser un diagnostic. Bien que très répandus, les microscopes optiques ne suffisent pas toujours à fournir la résolution nécessaire a cause des limites imposées par la diffraction de la lumière.

Une troisième famille de microscopes, dits à sondes locales, a vu le jour dans les années 1980. La technologie la plus répandue est le microscope à force atomique ou AFM pour Atomic Force Microscope. Son principe revient à remplacer le sens de la vue par celui du toucher. Une nano-pointe balaye la surface à observer ligne par ligne, à la manière des non-voyants lisant le braille. La pointe renvoie une mesure de force, et, en assemblant toutes les lignes, le microscope reconstitue une image de la surface. Grâce aux micro-technologies, on sait fabriquer depuis 1985 des pointes extrêmement fines. Cela confère au microscope AFM une résolution lui permettant de voir des nanostructures, des atomes individuels, ou encore des molécules (ADN, protéines). Cependant, jusqu’à maintenant le capteur de force qui fait le lien entre la pointe et la tête de l’appareil avait très peu évolué: il limitait fortement la rapidité de la mesure et nécessitait une instrumentation optique macroscopique qui constitue souvent un verrou.

Depuis 2005, les travaux de l’IEMN sur des technologies MEMS (Micro-Electro-Mechanical-Systems ont permis d’explorer une instrumentation basée sur des capteurs renouvelés. Cette approche est repartie à la base par la conception micromécanique de résonateurs à pointes, puis s’est poursuivie sur les aspects instrumentaux.

En 2015, la société Vmicro a été créée en tant que spin-off du laboratoire et poursuit le développement de ces sondes en optimisant toutes les étapes de fabrication en salle blanche, afin de mettre sur pied une production compatible avec les exigences des utilisateurs d’AFM issus de domaines très variés, de la science des surfaces aux biologistes. L’entreprise collabore à travers plusieurs projets avec l’IEMN et une publication commune vient de concrétiser un nouveau saut technologique.

Les chercheurs et ingénieurs ont développé une micro-sonde verticale basée sur un résonateur qui permet de contrôler le mouvement de la pointe de façon optimale et ce à des fréquences de plusieurs mégahertz. Une version plus miniature en technologie NEMS est aussi présentée dans l’article.

Le nouveau capteur, nommé Vprobe, a été utilisé dans un microscope commercial modifié et a été testé avec succès en conditions réelles, aux limites instrumentales permises par le montage. Avec une pointe très élancée, la Vprobe réalise enfin la configuration verticale du premier microscope de champ proche de l’histoire, le STM (scanning tunneling microscope) mais avec les atouts de l’AFM. Des transducteurs inventés pour l’occasion permettent de travailler à très faible impédance.

Référence : Atomic force microscope based on vertical silicon probe – APPLIED PHYSICS LETTERS 110, 243101 (2017)

Benjamin Walter,1 Estelle Mairiaux,1 and Marc Faucher1,2

1 – Vmicro SAS, Avenue Poincaré, 59650 Villeneuve d’Ascq, France
2 – Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS UMR 8520, Univ. Lille

 ABSTRACT : A family of silicon micro-sensors for Atomic Force Microscope (AFM) is presented that allows to operate with integrated transducers from medium to high frequencies together with moderate stiff- ness constants. The sensors are based on Micro-Electro-Mechanical-Systems technology. The verti- cal design specifically enables a long tip to oscillate perpendicularly to the surface to be imaged. The tip is part of a resonator including quasi-flexural composite beams, and symmetrical transducers that can be used as piezoresistive detector and/or electro-thermal actuator. Two vertical probes (Vprobes) were operated up to 4.3 MHz with stiffness constants 150 N/m to 500 N/m and the capa- bility to oscillate from 10 pm to 90 nm. AFM images of several samples both in amplitude modula- tion (tapping-mode) and in frequency modulation were obtained. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4985125]

SEM images of two micro-fabricated Vprobes.

(a) Vprobe n”1 made on 5 lm device layer SOI wafer: operating frequency 1.18 MHz, stiffness 500 N/m. On this probe, the tip has an electrical access, thanks to metal lines deposited onto lateral beams 4,5.

(b) More miniaturized device Vprobe n”2 made on 500nm thick SOI: operating frequency 4.3 MHz, 150 N/m.

(c) Integrated high aspect ratio silicon tip obtained on Vprobe 1

(d) zoom at the tip apex.

 

 

 

 

Job offer : Integration and design of RF electronic sub-systems

 Category : Engineer

Engineering field: Experimental techniques in telecommunications engineering
BAP: C (For internal Lille1 purposes)

Location: IEMN Institute – Cité scientifique, Bâtiment P3, 59655 Villeneuve d’Ascq
Research Group: Cité scientifique, Bâtiment P3, 59655 Villeneuve d’Ascq    http://telice.univ-lille1.fr/
Job type:  1 year contract – Full time, open now.

 

MISSIONS :

The dimensioning and deployment of communication networks strongly relies on the knowledge of the radio channel characteristics in which the signals propagate. For wireless mobile applications including 4G and beyond, a multidimensional radio channel sounder has been developed in the IEMN lab TELICE team. The aim of this mission is to participate to the evolution of this system.

The responsibilities of the engineer in collaboration with the TELICE staff (engineer and faculty) include :

  • The integration of realized various electronic functions along with the system designer and
  • Define, develop, and test measurement protocols
  • The design of the electronic sub-systems adaptors and improvement of all or parts of existing experimental equipment
  • Conduct the measurements
  • Participate to the data treatment and analysis prior to scientific interpretation

MAIN SKILLS :

  • Advanced knowledge and hand-on experience with scientific equipment dedicated to measurement and analysis of frequency/time signals and operating conditions : Network analyzer, spectrum analyzer and oscilloscopes
  • Knowledge in RF engineering and signal processing
  • Knowledge in analog/digital electronic engineering

OPERATIONNAL KNOW-HOW :

  • Translate any technical specification requests
  • Conception of simple electronic systems

LANGUAGE :Good English oral and written comprehension

ASSOCIATED SKILLS :

  • Team work
  • Written and oral presentation techniques experience

ADDITIONNAL SKILLS :
(optional but non essential)
Knowledge in Visual C++ & VHDL programming

REQUIREMENTS : Electronics with emphasis in RF engineering

DESIRED PROFESSIONAL EXPERIENCE: Electronics with emphasis in RF engineering

CONTACT  PERSONS:
Martine Liénard/ Pierre Laly  – Phone : (+33) 3 20 33 59 59
Mail : martine.lienard@univ-lille1.fr

GROSS SALARY : 35k€/an

PROCEDURE :
Please send full resume + motivation letter to martine.lienard@univ-lille1.fr

Offre d’emploi : Ingénieur de Recherche en Micro-fluidique expérimentale, Instrumentation électronique, et prototypage rapide

Dans le cadre d’un projet de maturation SATT NORD, nous recherchons des candidats pour un poste IR dans le groupe AIMAN-FILMS/(LIA LICS-IEMN). Comme indiqué dans le profil ci-dessous, le candidat devra avoir un très bon niveau de connaissances en micro-fluidique expérimentale, Instrumentation électronique, et prototypage rapide.

 

La SATT Nord (Société d’Accélération du Transfert de Technologie) est une société d’investissement filiale des établissements de recherche et d’enseignements supérieurs des Hauts-de-France et de Champagne-Ardenne. La société a pour mission de faciliter l’exploitation sous forme de licensing ou de création d’entreprises, par les acteurs économiques, des innovations issues des laboratoires de recherche du périmètre considéré.

Dans le cadre de son développement, la société, dont le siège est à Lille, recherche un : Ingénieur en Mécanique des Fluides h/f CDI de Chantier basé à Lille (59)

Mots clés : Mécanique des fluides.

Contexte :
Le projet de maturation d’une durée évaluée à 24 mois porte sur la mise au point d’un design optimal de micro-pompe à membrane par commande électro-magnétique. L’objectif du projet est d’atteindre des caractéristiques techniques pour une application définie en réalisant un prototype avancé satisfaisant les cahiers des charges fonctionnels.
Votre mission :
Sous la direction du responsable scientifique du projet, l’ingénieur(e) sera en charge de réaliser un banc de caractérisation automatisé de micropompes, de les caractériser sur le banc lors d’un plan d’expérience, d’optimiser l’actionnement magnétique, de réaliser des tests de mises en série/parallèle et de produire les rapports de synthèses des résultats.

L’ingénieur(e) sera placé sous l’autorité hiérarchique de la SATT NORD.

Votre profil :
Docteur(e) / Ingénieur(e) en mécanique des fluides avec une expertise en micro-fluidique, prototypage rapide, et instrumentation (acquisition et traitement des données, imagerie optique des écoulements). Votre première expérience professionnelle sera un atout quant à une intégration rapide.

Rémunération : selon profil et expérience

Prise de fonction : Le poste est à pourvoir à Lille à compter du mois septembre 2017.

Contact : M. François CARPENTIER – Responsable Ressources Humaines – francois.carpentier@sattnord.fr Réf : 2017-MICROPOMPE-MECA

Merci d’envoyer vos candidatures à : abdelkrim.talbi@iemn.univ-lille1.fr , philippe.pernod@iemn.univ-lille1.fr, farzam.zoueshtiagh@univ-lille1.fr

Job offer: Engineer Position in Near field Microscopy and Instrumentation

In the frame of a H2020 (end-2017 to end-2020) large project gathering 8 European partners, we have a research engineer position having an expertise on near field microscopy (AFM, STM, …) based techniques and instrumentations.

The job consists to contribute to the development of a new Scanning Microwave Microscope (SMM= AFM + Microwave instrumentations) and associated control systems (Nanonis controller, vector network analyzer…). The recruited person will also participate to campaign of SMM imaging of thin film advanced materials and nanodevices for photovoltaic applications

This activity is located in the nanocharacterization center (1100m2 of new clean room spaces) of the IEMN (jointed CNRS-University of Lille Academic Institute).


• The duration of this position is of 18 Months extensible to 24 Months.
• This job will be available on beginning of December 2017.
→ Please send your CV and motivations by email to sophie.eliet@iemn.univ-lille1.fr.


Eligibility criteria
Master or Engineer degree with expertise on Scanning Probe Microscopy (SPM) and associated instrumentations as well as SPM imaging treatment.

Selection process
The selection will be based on the CV and telephone or on-site interview.

Skills/Qualifications
The candidate must have a experience on Near field Microscopy and associated instrumentations (controler).
The candidate must have serious knowledges on software dedicated for instrumentation control (e.g. Labview) and AFM imaging (e.g. Gwyddion).

Specific Requirements
An experience on microwave instrumentation will be an added skill.

 

IEMN : Romain Peretti reçoit une chaire d’excellence internationale

La Région Hauts-de-France et le Fond Européen de Développement Régional ont attribués une chaire d’excellence internationale à Romain Peretti, chercheur à l’IEMN, pour son projet ” TeraHertz Optical Traping of Viruses ” (THOTroV). Grâce à cette chaire, Romain Peretti a pour ambition de développer une technique de piégeage optique dans une nouvelle plage de longueur d’onde : le TeraHertz, afin de l’appliquer à des objets aussi petits que des virus.

Un neurone artificiel mille fois plus économe en énergie qu’un neurone biologique

Chef d’œuvre de l’évolution, le cerveau humain est une source d’inspiration pour les scientifiques. Des chercheurs de l’IEMN et de l’Ircica ont ainsi mis au point un neurone artificiel ultra-efficace en énergie et qui reproduit très précisément les signaux électriques générés dans le cerveau. Ces travaux sont publiés dans la revue Frontiers in Neuroscience.

Dans notre cerveau, les neurones sont connectés entre eux et génèrent une réponse binaire aux informations qu’ils reçoivent des autres cellules nerveuses : soit ils émettent un signal électrique, appelé aussi potentiel d’action, soit ils restent silencieux. Ce système est à la base de tous nos processus cognitifs et moteurs. Des chercheurs de l’Institut d’électronique, de microélectronique et de nanotechnologie (IEMN, CNRS/Université Lille I/ISEN Lille/Université Valenciennes Hainaut-Cambresis/École centrale de Lille) et de l’Institut de recherche sur les composants logiciels et matériels pour l’information et la communication avancée (Ircica, CNRS/Université Lille 1) ont reproduit ces propriétés à l’aide de dispositifs électroniques nanométriques.

Mesurant quelques microns carrés, ces neurones artificiels sont disposés en grand nombre sur un circuit intégré en silicium. Ils ne consomment que quelques dizaines de femtojoules (10-15 J) lors de la génération d’un potentiel d’action. Une performance énergétique environ 1000 fois supérieure à celle d’un neurone biologique, et qui dépasse de plusieurs ordres de grandeur celle de tous les autres neurones artificiels existants. Ces travaux ouvrent de nombreuses perspectives, comme la création de réseaux ultra-faible énergie pour l’intelligence artificielle. Ils pourraient également servir à développer les interactions entre neurones artificiels et neurones vivants, par exemple pour traiter des maladies comme celle de Parkinson ou réparer des altérations de la moelle épinière. Cette étude remet au passage en cause l’idée que les neurones naturels sont parfaitement optimisés sur le plan énergétique.

Contacts chercheurs :
Alain Cappy – IEMN et Ircica
Contact communication INSIS :
insis.communication@cnrs.fr

Références :

A 4-fJ/Spike Artificial Neuron in 65 nm CMOS Technology
Ilias Sourikopoulos, Sara Hedayat, Christophe Loyez, François Danneville, Virginie Hoel, Eric Mercier and Alain Cappy
Front. Neurosci., 15 March 2017
https://doi.org/10.3389/fnins.2017.00123

Extrait de l’article      __________________________________________________________________________

Ilias Sourikopoulos 1  –  Sara Hedayat 1  –  Christophe Loyez 1, 2,  –  François Danneville 1, 2,  –  Virginie Hoel 1, 2,  –  Eric Mercier 3, 4 and Alain Cappy 1, 2

  • 1 CNRS, Université Lille, USR 3380 – IRCICA, Lille, France,
  • 2 CNRS, Université Lille, ISEN, Université Valenciennes, UMR 8520 – IEMN, Lille, France,
  • 3 Université Grenoble Alpes, Grenoble, Grenoble, France,
  • 4 CEA, LETI, MINATEC Campus, Grenoble, France

As Moore’s law reaches its end, traditional computing technology based on the Von Neumann architecture is facing fundamental limits. Among them is poor energy efficiency. This situation motivates the investigation of different processing information paradigms, such as the use of spiking neural networks (SNNs), which also introduce cognitive characteristics. As applications at very high scale are addressed, the energy dissipation needs to be minimized. This effort starts from the neuron cell. In this context, this paper presents the design of an original artificial neuron, in standard 65 nm CMOS technology with optimized energy efficiency. The neuron circuit response is designed as an approximation of the Morris-Lecar theoretical model. In order to implement the non-linear gating variables, which control the ionic channel currents, transistors operating in deep subthreshold are employed. Two different circuit variants describing the neuron model equations have been developed. The first one features spike characteristics, which correlate well with a biological neuron model. The second one is a simplification of the first, designed to exhibit higher spiking frequencies, targeting large scale bio-inspired information processing applications. The most important feature of the fabricated circuits is the energy efficiency of a few femtojoules per spike, which improves prior state-of-the-art by two to three orders of magnitude. This performance is achieved by minimizing two key parameters: the supply voltage and the related membrane capacitance. Meanwhile, the obtained standby power at a resting output does not exceed tens of picowatts. The two variants were sized to 200 and 35 μm2 with the latter reaching a spiking output frequency of 26 kHz. This performance level could address various contexts, such as highly integrated neuro-processors for robotics, neuroscience or medical applications.

Introduction

Computing technology, based on binary coding, Von Neumann architecture and CMOS technology, is currently reaching certain limits (Waldrop, 2016). Traditional computers, the champions for the resolution of complex equation systems, have difficulties to classify/organize data, something that the human brain seems to accomplish effectively. For this reason, research in the field of Artificial Neural Networks (ANNs) is attracting much attention and is quickly developing worldwide. At the bottom of these efforts lies the ultimate goal to realize machines that could surpass the human brain, in some aspects of cognitive intelligence. In that sense, brain research and ANNs bear the promise of a new computing paradigm.

Currently, traditional, discrete-time, digital ANNs, fueled by the unprecedented computational capability of modern Graphics Processing Units (GPUs), represent the state-of-the-art for addressing cognitive tasks (Oh and Jung, 2004; LeCun et al., 2015) such the ones encountered in computer vision applications. However, it is the more recent class of Spiking Neural Networks (SNNs), often referred to as the third generation of neural networks, that are known to be bio-realistic and more computationally potent compared with their predecessors (Maass, 1997). The functional similarity with the actual biological networks permits envisioning, apart from interfacing or reproducing brain processes, the implementation of circuits and systems with cognitive characteristics without explicit programming tasks. This would endow the modern generation of computers with the capacity to learn from input data.

In SNNs, neuronal communication is carried out in the form of noise-robust, signal pulses or “spikes.” SNNs try to reproduce the physical characteristics of the brain, through highly connected neurons dendrites and axons. At present, two main methodologies fulfill neuro-inspired computing tasks: digital simulation and hardware implementation.

In digital simulations, the dynamics of neuronal models are coded in software and calculated on general-purpose digital hardware. Digital simulations have the advantage that they can be reliably programmed using numerical operations of very high precision. However, their reliability comes at the cost of high circuit complexity, which is necessary for the data transfer, exchange and processing (Cao et al., 2015). Accordingly, the energy consumption remains still very high, especially as one juxtaposes biological data for comparison. For instance, the brain of the cat is emulated at the cost of a power dissipation in the megawatt range (Ananthanarayanan et al., 2009), while the animal brain actually consumes only a couple of watts.

As far as hardware implementations of SNNs are concerned, the alternative, “neuromorphic,” approach consists of employing VLSI circuit technology, namely CMOS fabrication processes which can be possibly associated with more advanced device technology such as memristors (Kim et al., 2012). The analog hardware approach consists of a large-scale integration of silicon artificial neurons (AN) and synapses, in an attempt to produce low power neuro-inspired architectures compatible with the current electronics technology.

The efficiency of such architectures can be revealed in contrast to the energy consumption of biological neurons (BN). Brain activity needs a continuous exchange of ions through the cell membrane and these exchanges correspond to the charge and discharge of the neuron capacitance (soma, dendrite, and axon). As a consequence, the important parameters for energy dissipation are the membrane capacitance and the voltage swing. Membrane capacitance varies considerably according to the type of neuron cell, ranging from picofarads to nanofarads for the largest ones (Amzica and Neckelmann, 1999; Golowasch et al., 2009; Rössert et al., 2009; Tripathy and Gerkin, 2012). Interestingly, a recent estimation of the capacitance that could be involved for computation in the human cortex is proposed in Hasler and Marr (2013). The calculations are based on a digital power model and suggest a biological system of 1012 neurons with a 0.5 Hz average firing rate. The total capacitance value is calculated at 245 pF that is high when compared with the femtofarad order common in integrated circuits. Indeed, energy savings could be envisioned in silicon AN by aiming at reducing the capacitance and/or the voltage swing.

Next to a reduced capacitance, low power operation in silicon neurons can be facilitated by the physics of the MOS transistors. Indeed, as it has been observed (Mead, 1989, 1990) the nervous system uses, as its basic operation, a current that increases exponentially with the membrane voltage, similar to the current-voltage characteristic of a MOS transistor operating in subthreshold. However, the physical origins of these exponential dependencies are very different: a non-linear voltage controlled conductance in biological membrane against a current controlled by an energy barrier in the transistor. Due to this, the MOS transistor can only asymptotically approach a slope of kT/q per e-fold of current change, while the biology is not limited as such (Mead, 1989, 1990). Even if I-V characteristics show different slopes, a bridge between the physics of biological membrane and the one of electronic devices has been established, especially when the energy and power properties are considered. This led to the advent of neuromorphic silicon neurons, which allowed neuronal spiking dynamics to be directly emulated on analog large-scale integration chips. So far, several generations of SNNs have been proposed and the reader could refer to the relevant works (Misra and Saha, 2010; Indiveri et al., 2011; Hasler and Marr, 2013) to obtain more information.

Based upon these previous works, this paper describes the design and measurement results of a new family of silicon AN. It was designed under the guidelines of (i) a biophysically meaningful model, (ii) a minimum energy dissipation, (iii) an analog circuit that would allow a complete time variation modeling of the membrane potential and (iv) a resulting topology, that when implemented in CMOS technology, it would occupy a minimum area in order to enable large scale integration. This unique combination of characteristics resulted in a neuron topology that was measured to consume several orders of magnitude less energy than the values encountered either for BN or the AN reported so far.

The rest of this paper is organized as follows: The “Materials and methods” section will be devoted to a discussion on neuron energy efficiency, the selection of the mathematical model and the circuit topology and functionality. The circuit proposed in this paper was fabricated and characterized experimentally. Both simulation and experimental results are described in the “Results” section. The “Discussion” section presents a comparison with the state of the art and highlights issues regarding noise, supply voltage sensitivity and temperature impact. Finally conclusions are drawn in the eponymous last section.

Les ondes térahertz au secours de l’Internet sans fil

Malgré l’extension du réseau 4G, l’Internet sans fil a encore besoin de nombreuses innovations pour atteindre les mêmes débits que les fibres optiques. Une équipe internationale, basée notamment à l’Institut d’Electronique, de Microélectronique et de Nanotechnologie, a montré que les ondes dans les environs des fréquences térahertz pouvaient prendre le relais des réseaux câblés. Ces travaux sont publiés dans Nature Photonics.

© IEMN (A. Duchêne) – Visuel qui illustre le composant principal, à savoir le composant qui permet de “passer” du monde des fibres optiques (en bas à gauche) au monde des térahertz (la spirale) pour les télécoms (petites formes en haut à droite).

En 2018, Internet représentera plus de 130 milliards de milliards d’octets de données échangés par mois. Comme la majeure partie de cette croissance est attendue sur les canaux sans fil, les infrastructures de transport ultra haut débit doivent considérablement évoluer. Cela demande des composants plus rapides, car la hausse du débit ne sera absorbée qu’avec une montée en fréquence des ondes vers le début de la bande THz (entre 220 et 350 GHz). Des chercheurs de l’Institut d’électronique, de microélectronique et de nanotechnologie (IEMN, CNRS/Université Lille-1/ISEN Lille/Université de Valenciennes et du Hainaut-Cambrésis/École centrale de Lille) ont pu mettre en place un premier démonstrateur, sur la base de dispositifs optoélectroniques qui transforment les signaux des fibres optiques en signaux radio.

Ces démonstrations utilisent des composants optoélectroniques qui réalisent un «?photomélange?». Dans ce procédé, deux lasers sont envoyés sur une même photodiode, qui les transforme en un signal qui correspond à la différence de leurs longueurs d’onde. Cela convertit des signaux optiques de l’ordre de la centaine de THz, typiques des fibres optiques, en un signal radio autour de 300 GHz. À l’IEMN, un débit de 32 Gbit/s en mode sans fil a été transmis sur plusieurs dizaines de mètres grâce à une fréquence d’environ 400 GHz. Ces fréquences permettent un très bon compromis entre les capacités des composants et l’atténuation des ondes dans l’air, ce qui permettra à terme d’atteindre la portée requise pour un usage urbain. Cette étape permet d’avancer vers les prochains défis : une vitesse de transfert supérieure à 100 Gbit/s et des transmissions sur plus d’un kilomètre.

La technologie associée à ces travaux a été développée grâce au réseau des grandes centrales de technologie RENATECH, à l’aide des laboratoires PhLAM et IRCICA et au soutien des programmes ANR COM’TONIQ, les Equipex FLUX, Excelsior et le CPER Photonics for society.

Références :

Advances in terahertz communications accelerated by photonics,
T. Nagatsuma, G. Ducournau and C.C. Renaud
Nature Photonics – 10, 371-379 (2016)
DOI: 10.1038/NPHOTON.2016.65

Contacts chercheurs :
Guillaume Ducournau – IEMN
Contact communication INSIS :
insis.communication@cnrs.fr