Nanoécole Lille, on en parle …

Passionnée, Patricia Lefebvre a expliqué son métier par le concret

Passionnée, Patricia Lefebvre a expliqué son métier par le concret

 

 

Auchel : une ingénieure du CNRS compte sur la relève des élèves de Lavoisier

Susciter des vocations, des projets de carrière scientifique, parmi les élèves de terminale, première et seconde, c’était bien là l’objectif d’Alberto Da Silva, professeur de physique à Lavoisier lorsqu’il a organisé la venue de Patricia Lefebvre, ingénieure au CNRS (Centre National de la Recherche Scientifique) de l’IEMN (Institut d’Electronique, de Microélectronique et de Nanotechnologie) à l’Université de Lille 1.

 

 

Vendredi, plus de deux cents élèves ont profité de la rencontre, avec des interventions adaptées au programme de chaque niveau. Les nanotechnologies et le nanomonde, illustré par quelques petites expériences. Patricia a aussi parlé de son laboratoire, où travaillent cinq cents personnes, et de tous les métiers nécessaires à son bon fonctionnement : techniciens, opérateurs, chercheurs, ingénieurs…

« Nous avons besoin de plus en plus de compétences différentes. Plus tard, dans votre métier, on vous demandera d’être compétent là où vous êtes. On espère que vous, lycéens, prendrez la relève », souffle-t-elle.

Pour le professeur de physique, cet échange est à reconduire.

« Même si cela ne crée que quatre vocations, eh bien ce sera déjà cela. Le message que nous, professeurs, véhiculons au quotidien est très important mais qui mieux qu’une ingénieure pour parler de son métier. Il est important de multiplier les discours. D’autant plus qu’il s’agit ici d’une femme et qu’elles ne sont pas assez dans le domaine scientifique alors qu’il y a plus de filles que de garçons qui obtiennent un bac S. »

 

Publiée le 23/05/2016, La Voix du Nord

Voix du Nord

Absence of carrier separation in ambipolar charge and spin drift in p+-GaAs

aplc1.qxp:Layout 1

Une étude dans le cadre de la collaboration entre l’IEMN et l’Ecole Polytechnique (Palaiseau) a fait la couverture du journal Applied Physics Letters
http://scitation.aip.org/content/aip/journal/apl/107/16
http://scitation.aip.org/content/aip/journal/apl/107/16/10.1063/1.4933189

 

 

 

 

 

 

 

 

 

 

 

Une étude faite à l’IEMN à la Une du Journal of Polymer Science B

Cette étude a démontré un substrat photo-durcissable et photo-usinable composé de l’élastomère polydimethylsiloxane (PDMS) et la résine photo-sensible SU-8. Le substrat aurait des applications dans les systèmes flexibles tels que l’électronique souple.

Journal of Polymer Science B- Volume 53, Issue 18, pages i-ii, 15 September 2015
http://onlinelibrary.wiley.com/doi/10.1002/polb.23787/abstract

 

 

 

SU-8 as a material for lab-on-a-chip-based mass spectrometry

Couverture (dos) du journal <<Lab on a Chip>>, No 19 – 2014
Montage – S. Arscott et A. Callewaert

Lien : http://pubs.rsc.org/en/content/articlelanding/2014/lc/c4lc90090a

 

 

 

Pose de la 1ère pierre de l’extension de l’IEMN

 Article paru dans Nord Eclair le 12 juin 2014

Ingénierie des matériaux artificiels électromagnétiques : cristaux photoniques et métamatériaux

Article paru dans le magazine Photoniques – Numéro 69, Janvier-Février 2014

 

 

 

 


Didier Lippens – IEMN Université de Lille 1

_Voir l’article complet

Résumé

Le développement des techniques de micro-structuration des matériaux diélectriques et des composés métalliques permet actuellement un contrôle sans précédent de l’interaction des ondes électromagnétiques avec les matériaux artificiels. Nous illustrons ici l’ingénierie de telles structures de synthèse, capables de contrôler finement en module et en phase les grandeurs caractérisant la propagation et le rayonnement des ondes électromagnétiques. Ces structures permettent également d’introduire de nouveaux degrés de liberté dans les processus de réfraction, diffraction, collimation ou tout simplement de courbure des rayons par le biais de deux technologies clés : les cristaux photoniques et les métamatériaux. Plusieurs exemples relatifs à ces deux technologies sont présentés avec l’optimisation des performances de composants ultra-compacts en optique intégrée déjà développés par l’industrie et la proposition de nouvelles fonctionnalités telle que la réalisation de composants d’invisibilité au stade de recherches sur l’optique de transformation.

 

© EDP Sciences, 2014

Après le WIFI, bientôt le TIFI

_______Voir l’article complet paru dans le magazine J’innove

Des chercheurs lillois participent actuellement à la construction des réseaux de télécommunication du futur et imaginent pouvoir multiplier par 100 à 1000 le débit du WIFI d’ici 2025 !

« La technologie pourrait s’appeler TIFI, en référence aux térahertz et au WIFI », s’entousiasme Guillaume Ducournau, chercheur à l’IEMN et coordinateur du projet Com’TONIQ au sein de l’Université Lille 1 et de l’IEMN. Alors que la technologie sans fil actuelle utilise des fréquences inférieures à 10 GHz, limitant le débit, les chercheurs vont créer les composants pour les très hautes fréquences, pour des transmissions ultrarapides.

 

 

Coherent terahertz

  L’IEMN et l’université d’OSAKA ont démontré une transmission térahertz cohérente ultra-sensible. A la fréquence 200 GHz, 10 Gbit/s ont été transférés avec une puissance inférieure à 2 µW. Cette étape importante vers les transmissions THz cohérentes a été réalisée dans le cadre de l’ANR franco-japonaise « WITH », dans laquelle l’IEMN a été en charge avec l’université d’OSAKA (Groupe de T. Nagatsuma) de la réalisation des systèmes de transmission THz.  

Coherent THz communication at 200 GHz using a frequency comb, UTC-PD and electronic detection

Source: Electronics Letters, Volume 50, Issue 5, 27 February 2014, p. 386 – 388

Author(s): G. Ducournau 1 ; Y. Yoshimizu 2 ; S. Hisatake 2 ; F. Pavanello 1 ; E. Peytavit 1 ; M. Zaknoune 1 ; T. Nagatsuma 2 ; J.-F. Lampin 1

A combined research effort in France and Japan has produced a real-time photonic-based 10 GBit/s terahertz link with shown long term performance and an ultra-low power requirement at the receiver, using a coherent detection scheme.

Laws and limits

It has been observed that the current demand for greater bandwidth to provide new services like video streaming on mobile devices is driving an increase in available data rates in a predictable pattern – Edholm’s law of bandwidth. Like Moore’s law for transistor counts on integrated circuits, Edholm’s law observed that telecommunication data rates have doubled every 18 months, and predicts that they will continue to do so.

The currently used radio bands are heavily allocated, data rate limited and near saturation. One of the avenues of research that is being explored to address this problem is terahertz communication. The challenges of working in the THz regime are balanced by the massive potential to unlock very high data rates for end-users in a large new carrier frequency space for wireless communications.

 

The transmitter (inset) and the receiver of the system.

Fresh pastures

Most THz communication systems use Schottky-based direct detection to produce error-free and effective transmission systems. However, a current limitation with such systems that bars them from everyday application is that the link budgets (the losses between emission and detection) are strongly limited by the currently available emitter and receiver circuit technologies.

Using coherent detection, where the receiver is phase locked to the carrier wave, can drastically reduce the minimum power required to establish and maintain an effective wireless link. This is because it reduces the required number of photons per bit of transmitted data. This, of course, reduces pressure on the link budget requirements and could open up real-world applications of Thz communication. The main challenge with coherent schemes is the need for good synchronisation between the emitter and receiver.

Several research groups around the world have reported impressive results in THz communications but the key issue that remains in achieving robust THz links is obtaining long term error-free performance, which is required for real-time applications like video streaming.

An enduring link

In their Letter, the combined team from Université Lille1/CNRS and Osaka University report the first realisation of a real-time 10 Gbit/s wireless link at 200 GHz using a photonics-based source, with ultra-low required power at reception. They have demonstrated long term performance without the use of signal processing.

An eye diagram of a 10 Gbit/s signal sent and received using the system.

“The achievement of a real-time and robust coherent wireless link using a photonics-based optical source above 120 GHz is a key point in demonstrating that photonics-based THz generation is effective for THz links,” said team member Dr Guillaume Ducournau. “Our achievement relies on the combination of a very stable photonics frequency comb at emission, an efficient THz emitter (a unitravelling carrier photodiode) and a very high sensitivity coherent receiver.”

Pocket Terahertz

The authors are now working on increasing the data-rates achievable with their system by using other carrier frequencies. The researchers responsible for the work come from THz Photonics Group of the Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN) at Université Lille1/CNRS and the Graduate School of Engineering Science at Osaka University. The Lille group’s main interests are in THz sources using photomixing techniques at 1.55 and 0.8 µm and the application of these to wireless data links, THz instrumentation for imaging and THz near-field and nonreciprocity.

Looking to the next decade in this area, Dr Ducournau sees the potential for this kind of technology to move toward ubiquity. “The realisation of THz communications may rely on stable, robust THz emission chips, including power amplifiers at emission and low noise amplifiers at reception. Solid-state electronics are going higher and higher, and in the next decade all the building blocks of traditional communications at Wi-Fi frequencies will be available, leading to ultra-fast connections in the end-user’s pocket.”

>> PDF version